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e
Instructor’s Preface

This is an introduction to abstract algebra. It is anticipated that the students have studied
calculus and probably linear algebra. However, these are primarily mathematical ma-
turity prerequisites; subject matter from calculus and linear algebra appears mostly in
illustrative examples and exercises.

As in previous editions of the text, our aim remains to teach students as much about
groups, rings, and fields as we can in a first course. For many students, abstract algebra
is their first extended exposure to an axiomatic treatment of mathematics. Recognizing
this, we have included extensive explanations concerning what we are trying to accom-
plish, how we are trying to do it, and why we choose these methods. Mastery of this
text constitutes a firm foundation for more specialized work in algebra and also provides
valuable experience for any further axiomatic study of mathematics.

New to This Edition

[Editor’s Note: You may have noticed something new on the cover of the book. Another
author! I am thrilled that Neal Brand agreed to update this classic text. He has done so
carefully and thoughtfully, staying true to the spirit in which it was written. Neal’s years
of experience teaching the course with this text at the University of North Texas have
helped him produce a meaningful and worthwhile update to John Fraleigh’s work.]

Updates for the eText

A focus of this revision was transforming it from a primarily print-based learning tool to
a digital learning tool. The eText is therefore filled with content and tools that will help
bring the content of the course to life for students in new ways and help you improve
instruction. Specifically,

»  Mini lectures. These brief author-created videos for each section of the text give
an overview to the section but not every example or proof. Some sections will have
two videos. I have used these videos effectively with my students, who were
assigned to watch them ahead of the lecture on that topic. Students came to class
with a basic overview of the topic of the day, which had the effect of reducing
lecture time and increasing the class time used for discussion and student

vii



Instructor’s Preface

presentations. Students reported that the videos were helpful in giving an overview
of the topics and a better understanding of the concepts and proofs. Students were
also encouraged to view the videos after the topic was covered in class to reinforce
what they learned. Many students also used the videos to review topics while
preparing for exams. Although I have not attempted to flip the classroom, my
intention was to provide sufficient resources in the eText to make it feasible
without requiring other resources.

« Key idea quizzes. A database of definitions and named theorems will allow
students to quiz themselves on these key ideas. The database can be used in the
way that flash cards were traditionally used.

+  Self-assessments. Occasional questions interspersed in the narrative allow
students to check their understanding of new ideas.

+ Interactive figures and utilities. I have added a number of opportunities for
students to interact with content in a dynamic manner in order to build or enhance
understanding. Interactive figures allow students to explore concepts geometrically
or computationally in ways that are not possible without technology.

« Notes, Labels, and Highlights. Notes allow instructors to add their personal
teaching style to important topics, call out need-to-know information, or clarify
difficult concepts. Students can make their eText their own by creating highlights
with meaningful labels and notes, helping them focus on what they need to study.
The customizable Notebook allows students to filter, arrange, and group their notes
in a way that makes sense to them.

+ Dashboard. Instructors can create reading assignments and see the time spent in
the eText so that they can plan more effective instruction.

+ Portability. Portable access lets students read their eText whenever they have a
moment in their day, on Android and iOS mobile phones and tablets. Even without
an Internet connection, offline reading ensures students never miss a chance to
learn.

+ Ease-of-Use. Straightforward setup makes it easy for instructors to get their class
up and reading quickly on the first day of class. In addition, Learning Management
System (LMS) integration provides institutions, instructors, and students with
single sign-on access to the eText via many popular LMSs.

Exercises

Many exercises in the text have been updated, and many are new. In order to prevent
students from using solutions from the previous edition, I purposefully replaced or re-
worded some exercises.

I created an Instructor Solutions Manual, which is available online at www.pearson.com
to instructors only. Solutions to exercises involving proofs are often sketches or hints,
which would not be in the proper form to turn in.

Text Organization Modifications

For each part of the text, I provide an overview of the changes followed by significant
changes to sections. In cases where changes to parts or sections were minor, I have not
included a list of changes.

Part I: Groups and Subgroups

+  Overview of changes: My main goals were to define groups and to introduce the
symmetric and dihedral groups as early as possible. The early introduction of these
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groups provides students with examples of finite groups that are consistently used
throughout the book.

Section 1 (Binary Operations). Former Section 2. Added definition of an identity
for a binary operation.

Section 2 (Groups). Former Section 4. Included the formal definition of a group
isomorphism.

Section 3 (Abelian Examples). Former Section 1. Included definition of circle
group, R,, and Z,. Used circle group to show associativity of Z, and R,.

Section 4 (Nonabelian Examples). Based on parts of former Sections 5, 8, and 9.
Defined dihedral group and symmetric group. Gave a standardized notation for the
dihedral group that is used consistently throughout the book. Introduced both
two-row and cycle notation for the symmetric group

Section 5 (Subgroups). Former Section 5. Included statement of two other
conditions that imply a subset is a subgroup and kept the proofs in the exercise
section. Made minor modifications using examples from new Section 4.

Section 6 (Cyclic Groups). Former Section 6. Added examples using dihedral
group and symmetric group.

Section 7 (Generating Sets and Cayley Digraphs). Minor modification of former
Section 7.

Part II: Structure of Groups

Overview of changes: The main goal was to give the formal definition of
homomorphism earlier in order to simplify the proofs of Cayley’s and Lagrange’s
theorems.

Section 8 (Groups of Permutations). Included formal definition of homomorphism.
Based on parts of former Sections 8, 9, and 13. Used two-row permutation
notation to motivate Cayley’s theorem before proof. Deleted first part of section 13
(covered in Section 4). Omitted determinant proof of even/odd permutations since
definition of determinant usually uses sign of a permutation. Kept orbit counting
proof. Put determinant proof and inversion counting proof in exercises.

Section 9 (Finitely Generated Abelian Groups). Former Section 11. Added the
invariant factor version of the theorem. Showed how to go back and forth between
the two versions of the fundamental theorem.

Section 10 (Cosets and the Theorem of Lagrange). Former Section 10. Changed
the order by putting Lagrange’s Theorem first, motivating G/H later in the section.
Section 11 (Plane Isometries). Minor modification of former Section 12.

Part I1I: Homomorphisms and Factor Groups

Overview of changes: My main goal was to include a few more examples to
motivate the theory and give an introduction to using group actions to prove
properties of groups.

Sections 12-15 are based on former Sections 14-17, respectively.

Section 12 (Factor Groups). Started section with Z/nZ example to motivate
general construction. Defined factor groups from normal subgroups first instead of
from homomorphisms. After developing factor groups, showed how they are
formed from homomorphisms.

Section 13 (Factor-Group Computations and Simple Groups). Added a few more
examples of computing factor groups. Explicitly used the fundamental
homomorphism theorem in computation examples.
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Section 14 (Group Action on a Set). Expanded examples of the general linear
group and the dihedral group acting on sets. Added some applications of group
actions to finite groups in anticipation of the Sylow Theorems, including Cauchy’s
Theorem and that fact that p-groups have a nontrivial center.

Section 15 (Applications of G-sets to Counting). Minor modifications.

Part IV: Advanced Group Theory

Overview of changes: I moved this part to be closer to the rest of the group theory
sections. More examples were included to help clarify the concepts.

Section 16 (Isomorphism Theorems). Former Section 3. Added two examples and
rewrote proofs of two theorems.

Section 17 (Sylow Theorems). Former Sections 36 and 37. Since Cauchy’s
Theorem and a few other theorems leading to the Sylow Theorems were covered in
new Section 14, this material was removed and the old Sections 36 and 37 were
combined. A few examples and exercises were added and a proof was rewritten.
Section 18 (Series of Groups). Former Section 35. The proof of the Zassenhaus
Lemma was placed after the theorem instead of making the argument before
stating the theorem. One example added.

Sections 19 (Free Abelian Groups), 20 (Free Groups), and 21 (Group
Presentations). Minor modifications of former Sections 38—40.

Part V: Rings and Fields

Overview of changes: The previous Part IV was split into two parts, one giving an
introduction and the second giving methods of constructing rings and fields.
Section 22 (Rings and Fields). Minor modification of former Section 18.

Section 23 (Integral Domains). Former Section 19. Changed former Theorem 19.3
to classify all elements in Z,. Added corollary that Z, is a field, anticipating the
theorem that all finite integral domains are fields.

Section 24 (Fermat’s and Euler’s Theorems). Former Section 20. Simplified proof
of Euler’s generalization using classification of elements in Z,.

Section 25 (Encryption). New section outlining how RSA encryption works. This
provides a nice application of the material in Section 24.

Part VI: Constructing Rings and Fields

Overview of changes: Part VI includes sections from the previous Parts IV and V.
The change emphasizes construction techniques used to form rings and fields.
Section 26 (The Field of Quotients of an Integral Domain). Former Section 21.
Rewrote the introduction to include two examples of integral domains and their
field of quotients to motivate the general construction.

Section 27 (Rings of Polynomials). Minor modification of former Section 22.
Section 28 (Factorization of Polynomials over a Field). Former Section 23.
Rewrote former Theorem 23.1 by making a lemma showing how to reduce degree
of polynomials in set S. Included proof of former 23.11 in the exercises.

Section 29 (Algebraic Coding Theory). New section introducing coding theory,
focusing on polynomial codes. This gives an application of polynomial
computation over a finite field.

Section 30 (Homomorphisms and Factor Rings). Former Section 26. Motivated
why you need the usual conditions for an ideal by starting the section with the
example of Z/nZ. Rearranged the order by showing that / an ideal of R gives rise
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to the factor ring R/, then included the material on homomorphisms and factor
rings from the kernel. Expanded the statement of former Theorem 26.3 to make it
easier to read and more approachable.
«  Section 31 (Prime and Maximal Ideals). Minor modification of former Section 27.
+  Section 32 (Noncommutative Examples). Minor modification of former Section 24.

Part VII: Commutative Algebra

*  Overview of changes: This part includes sections that fit under the general heading
of commutative algebra.

+  Section 33 (Vector Spaces). Former Section 30. Added two examples and a brief
introduction to R-modules over a ring motivated by vector spaces and abelian
groups. Moved Former Theorem 30.23 to Section 45 on field extensions.

+  Section 34 (Unique Factorization Domains). Former Section 45. Included
definition of a Noetherian ring and made other minor changes.

«  Section 35 (Euclidean Domains) and Section 36 (Number Theory) are minor
modifications of Sections 46 and 47, respectively.

»  Section 37 (Algebraic Geometry). Based on the first half of former Section 28.
Added a proof of the Hilbert Basis Theorem.

«  Section 38 (Grobner Bases for Ideals). Based on the second half of former Section
28. Added two applications of Grobner Bases: deriving the formulas for conic
sections and determining if a graph can be colored with k colors.

Part VIII: Extension Fields

+  Overview of changes: Part VIII consists of minor changes from former Part VI.

«  Section 39 (Introduction to Extension Fields). Former Section 29. Divided former
Theorem 29.13 into a theorem and a corollary. Rewrote former Theorem 29.18 and
its proof to make it easier to follow. Included example moved from former
Section 30.

+  Section 40 (Algebraic Extensions), Section 41 (Geometric Constructions), and
Section 42 (Finite Fields) are minor modifications of former Sections 31-33,
respectively.

Part IX: Galois Theory

+  Overview of changes: The previous Part X was rewritten to form Part IX. The goal
was to improve the readability of the material while maintaining a rigorous
development of the theory.

»  Section 43 (Introduction to Galois Theory). New section. Uses the field extension
0(2,/3) throughout to motivate and illustrate basic definitions and theorems
including field automorphism, field fixed by an automorphism, group of
automorphisms fixing a subfield, conjugates, and the conjugate isomorphism
theorem. By using an easy-to-understand example consistently throughout, the
concepts become more concrete.

+  Section 44 (Splitting Fields). Includes the contents of former Sections 49 and 50,
but it is completely rewritten. Less emphasis is given to the algebraic closure of a
field and more emphasis is given to subfields of splitting fields.

+  Section 45 (Separable Extensions). Contents include most of former Section 51
and a little from former Section 53, but material has been rewritten. The notation
{E:F} was omitted and definition of separable was given in terms of multiplicity of
zeros. Emphasized subfields of the complex numbers.
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+  Former Section 52 on totally inseparable extensions was omitted since it was not
used elsewhere and it detracts from the flow of the rest of Part IX.

+  Section 46 (Galois Theory). Former Section 53. Separated the parts of Galois
Theory into separate theorems. Continued the same example throughout the
section to motivate and illustrate the theorems. By the end of the section, the
continued example illustrates how Galois Theory can be used.

» Section 47 (Illustrations of Galois Theory). Minor modification of former Section
54.

» Section 48 (Cyclotomic Extensions). Former Section 55. In order to make the text
more readable, restricted the field extensions to subfields of the complex numbers
over the rational numbers since this is the only case that is used in the book.

+  Section 49 (Insolvability of the Quintic). Former Section 56. Replaced
construction of a polynomial that is not solvable by radicals with a specific
concrete polynomial. The previous construction of a nonsolvable polynomial was
moved to the exercises.

Part X: Groups in Topology (Online at bit.ly/2VBCiej)
« Sections 50-53 are minor modifications of former sections 41-44.

Some Features Retained

I continue to break down most exercise sets into parts consisting of computations, con-
cepts, and theory. Answers to most odd-numbered exercises not requesting a proof again
appear at the back of the text. I am supplying the answers to parts a, c, €, g, and i only
of our 10-part true-false exercises. The excellent historical notes by Victor Katz are, of
course, retained.

Suggestions for New Instructors of Algebra

Those who have taught algebra several times have discovered the difficulties and devel-
oped their own solutions. The comments we make here are not for them.

This course is an abrupt change from the typical undergraduate calculus for the stu-
dents. A graduate-style lecture presentation, writing out definitions and proofs on the
board for most of the class time, will not work with most students. We have found it
best to spend at least the first half of each class period answering questions on home-
work, trying to get a volunteer to give a proof requested in an exercise, and generally
checking to see if they seem to understand the material assigned for that class. Typi-
cally, we spent only about the last 20 minutes of our 50-minute time talking about new
ideas for the next class, and giving at least one proof. The videos for each section can
effectively be used to supplement or replace lectures. From a practical point of view, it
is a waste of time to try to write on the board all the definitions and proofs. They are in
the text.

‘We suggest that at least half of the assigned exercises consist of the computational
ones. Students are used to doing computations in calculus. Although there are many
exercises asking for proofs that we would love to assign, we recommend that you assign
at most two or three such exercises and try to get someone to explain how each proof
is performed in the next class. We do think students should be asked to do at least one
proof in each assignment.

Students face a barrage of definitions and theorems, something they have never
encountered before. They are not used to mastering this type of material. Grades on
tests that seem reasonable to us, requesting a few definitions and proofs, are apt to be
low and depressing for most students and instructors. To encourage students to keep up
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with the basic material, I give approximately ten pop quizzes per semester that typically
involve stating a definition, giving an example, or stating a major theorem.

At the University of North Texas, abstract algebra is a two-semester sequence. The
first semester is required of all math majors and the second semester is optional. Because
most students opt not to continue with the second semester, it is not offered every year.
When I teach either class, I give three 50-minute in-class exams. With exam reviews
and going over completed exams, this leaves approximately 36 class periods for new
material.

In the first-semester class, the base material I always cover includes Sections 0-6,
8,9, 12, 13, and 22-25. I average approximately two class periods per section, so I can
usually cover a few more sections. Options I have used for the remaining time include
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Sections 14 and 15, Sections 26-28, Section 17, or Sections 30 and 31. One semester
I attempted to cover enough field extension material in order to cover Section 41. This
required me to carefully select material in Sections 27, 28, 39, and 40 in order to prepare
the students for Section 41.

For the second semester, I usually have as goals proving the impossibility of bi-
secting an angle using compass and straightedge and the insolvability of quintic poly-
nomials. Assuming that students have seen the basic material in the first semester as
described above, these goals require covering material from Sections 16, 18, 27, 28, 30,
31, 33, 34, and 39-49. This turns out to be an ambitious undertaking, but the purpose of
rewriting Part IX was to make the material more accessible to students, and therefore
make the goal of covering Galois Theory in a second-semester class more feasible.
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This course may well require a different approach than those you used in previous math-
ematics courses. You may have become accustomed to working a homework problem
by turning back in the text to find a similar problem, and then just changing some num-
bers. That may work with a few problems in this text, but it will not work for most of
them. This is a subject in which understanding is all-important, and where problems
should not be tackled without first studying the text.

Let us make some suggestions on studying the text. Notice that the text bristles
with definitions, theorems, corollaries, and examples. The definitions are crucial. We
must agree on terminology to make any progress. Sometimes a definition is followed by
an example that illustrates the concept. Examples are probably the most important aids
in studying the text. Pay attention to the examples.

Before reading a section, it may be helpful to watch the video associated with the
section. I have two general pieces of advice for watching a video or reading the text.
First, minimize your distractions. It takes a good deal of concentration for most of us to
learn new technical information. Second, have paper and pen (or the electronic equiva-
lent) at hand to take notes and to occasionally work out computations on your own.

I suggest you skip the proofs of the theorems on your first reading of a section,
unless you are really “gung-ho” on proofs. You should read the statement of the theorem
and try to understand just what it means. Often, a theorem is followed or preceded by an
example that illustrates it, which is a great aid in really understanding what the theorem
says. Pay particular attention to the summary at the end of each video to get an overview
of the topics covered.

In summary, on your first viewing and reading of a section, I suggest you concen-
trate on what information the section gives and on gaining a real understanding of it.
If you do not understand what the statement of a theorem means, it will probably be
meaningless for you to read the proof.

Proofs are basic to mathematics. After you feel you understand the information
given in a section, you should read and try to understand at least some of the proofs. In
the videos you will find a few proofs. Watching the videos a second time after you have
a better understanding of the definitions and the statements of the theorems will help
to clarify these proofs. Proofs of corollaries are usually the easiest ones, for they often
follow directly from the theorem. Many of the exercises under the "Theory” heading

XV
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ask for a proof. Try not to be discouraged at the outset. It takes a bit of practice and
experience. Proofs in algebra can be more difficult than proofs in geometry and calculus,
for there are usually no suggestive pictures that you can draw. Often, a proof falls out
easily if you happen to look at just the right expression. Of course, it is hopeless to
devise a proof if you do not really understand what it is that you are trying to prove. For
example, if an exercise asks you to show that a given thing is a member of a certain set,
you must know the defining criterion for a thing to be a member of that set, and then
show that your given thing satisfies that criterion.

There are several aids for your study at the back of the text. Of course, you will
discover the answers to odd-numbered problems that do not involve a proof. If you run
into a notation such as Z, that you do not understand, look in the list of notations that
appears after the bibliography. If you run into terminology like inner automorphism that
you do not understand, look in the index for the first page where the term occurs.

In summary, although an understanding of the subject is important in every mathe-
matics course, it is crucial to your performance in this course. May you find it a reward-
ing experience.



SECTION 0

SETS AND RELATIONS

On Definitions, and the Notion of a Set

Many students do not realize the great importance of definitions to mathematics. This
importance stems from the need for mathematicians to communicate with each other.
If two people are trying to communicate about some subject, they must have the same
understanding of its technical terms. However, there is an important structural weakness.

It is impossible to define every concept.

Suppose, for example, we define the term set as “A set is a well-defined collection of
objects.” One naturally asks what is meant by a collection. We could define it as “A
collection is an aggregate of things.” What, then, is an aggregate? Now our language is
finite, so after some time we will run out of new words to use and have to repeat some
words already examined. The definition is then circular and obviously worthless. Math-
ematicians realize that there must be some undefined or primitive concept with which
to start. At the moment, they have agreed that set shall be such a primitive concept. We
shall not define set, but shall just hope that when such expressions as “the set of all real
numbers” or “the set of all members of the United States Senate” are used, people’s
various ideas of what is meant are sufficiently similar to make communication feasible.
We summarize briefly some of the things we shall simply assume about sets.

1. A set S is made up of elements, and if a is one of these elements, we shall
denote this fact by a € S.

2. There is exactly one set with no elements. It is the empty set and is denoted
by @.

3. We may describe a set either by giving a characterizing property of the
elements, such as “the set of all members of the United States Senate,” or by
listing the elements. The standard way to describe a set by listing elements is
to enclose the designations of the elements, separated by commas, in braces,
for example, {1, 2, 15}. If a set is described by a characterizing property P(x)
of its elements x, the brace notation {x | P(x)} is also often used, and is read
“the set of all x such that the statement P(x) about x is true.” Thus

{2,4,6, 8} = {x|x is an even whole positive number < 8}
={2x|x=1,2,3,4}.

The notation {x | P(x)} is often called “set-builder notation.”

4. A setis well defined, meaning that if S is a set and a is some object, then
either a is definitely in S, denoted by a € S, or a is definitely not in S, denoted
by a ¢ S. Thus, we should never say, “Consider the set S of some positive
numbers,” for it is not definite whether 2 € S or 2 ¢ S. On the other hand, we
can consider the set T of all prime positive integers. Every positive integer is
definitely either prime or not prime. Thus 5 € T and 14 ¢ T It may be hard to
actually determine whether an object is in a set. For example, as this book
goes to press it is probably unknown whether 2@ + 1 is in 7. However,
20*) 4 1 is certainly either prime or not prime.



Section 0

0.1 Definition

0.2 Definition

0.3 Example

0.4 Definition

0.5 Example

Sets and Relations

It is not feasible for this text to push the definition of everything we use all the way
back to the concept of a set. For example, we will never define the number 7 in terms
of a set.

Every definition is an if and only if type of statement.

With this understanding, definitions are often stated with the only if suppressed, but
it is always to be understood as part of the definition. Thus we may define an isosceles
triangle as follows: “A triangle is isosceles if it has two congruent sides” when we really
mean that a triangle is isosceles if and only if it has two congruent sides.

In our text, we have to define many terms. We use specifically labeled and num-
bered definitions for the main algebraic concepts with which we are concerned. To avoid
an overwhelming quantity of such labels and numberings, we define many terms within
the body of the text and exercises using boldface type.

Boldface Convention
A term printed in boldface in a sentence is being defined by that sentence.

Do not feel that you have to memorize a definition word for word. The important
thing is to understand the concept, so that you can define precisely the same concept
in your own words. Thus the definition “An isosceles triangle is one having two sides
of equal length” is perfectly correct. Of course, we had to delay stating our boldface
convention until we had finished using boldface in the preceding discussion of sets,
because we do not define a set!

In this section, we do define some familiar concepts as sets, both for illustration
and for review of the concepts. First we give a few definitions and some notation.

A set B is a subset of a set A, denoted by B C A or A D B, if every element of B is in
A. The notations B C A or A D B will be used for B C A but B # A. n
Note that according to this definition, for any set A, A itself and & are both subsets of A.
If A is any set, then A is the improper subset of A. Any other subset of A is a proper
subset of A. | |

Let S ={1,2,3}. This set S has a total of eight subsets, namely @, {1}, {2}, {3},
{1,2},{1,3},{2,3},and {1, 2, 3}. A

Let A and B be sets. The set A x B = {(a,b) |a € A and b € B} is the Cartesian product
of A and B. [ ]

If A = {1,2,3} and B = {3, 4}, then we have
AxB=1{(1,3),(1,4),(2,3),(2,4),(3,3), 3,4} A

Throughout this text, much work will be done involving familiar sets of numbers.
Let us take care of notation for these sets once and for all.
Z s the set of all integers (that is, whole numbers: positive, negative, and zero).

Q is the set of all rational numbers (that is, numbers that can be expressed as quo-
tients m/n of integers, where n # 0).
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R is the set of all real numbers.

Z*,Q%, and R* are the sets of positive members of Z, Q, and R, respectively.

C is the set of all complex numbers.

Z*, Q*,R*, and C* are the sets of nonzero members of Z, Q, R, and C, respectively.

The set R x R is the familiar Euclidean plane that we use in first-semester calculus to
draw graphs of functions. A

Relations Between Sets

We introduce the notion of an element a of set A being related to an element b of set B,
which we might denote by a .92 b. The notation a .72 b exhibits the elements a and b
in left-to-right order, just as the notation (a, b) for an element in A x B. This leads us to
the following definition of a relation .92 as a set.

A relation between sets A and B is a subset .72 of A x B. We read (a,b) € .72 as “a is
related to b” and write a .72 b. [ ]

Let S be any set. We can define an Equality Relation = between S and itself as the
subset {(x, x) | x € S}. Of course, this is nothing new. It is simply the usual idea of what
it means for two “things” to be equal. So if x,y € § are different elements, then they are
not related by the equality relation and we write x # y, but if x and y are the same then
we write x = y. A

We will refer to any relation between a set S and itself, as in the preceding example,
as a relation on S.

The graph of the function f where f(x) = x> for all x € R, is the subset {(x,x*) | x € R}
of R x R. Thus it is a relation on R. The function is completely determined by its graph.
A

The preceding example suggests that rather than define a “function” y = f(x) to be
a “rule” that assigns to each x € R exactly one y € R, we can easily describe it as a
certain type of subset of R x R, that is, as a type of relation. We free ourselves from R
and deal with any sets X and Y.

A function ¢ mapping X into Y is a relation between X and Y with the property that
each x € X appears as the first member of exactly one ordered pair (x,y) in ¢. Such a
function is also called a map or mapping of X into Y. We write ¢ : X — Y and express
(x,y) € ¢ by ¢(x) = y. The domain of ¢ is the set X and the set Y is the codomain of
¢. The range of ¢ is ¢[X] = {p(x) | x € X}. | |

‘We can view the addition of real numbers as a function + : (R x R) — R, that is, as a
mapping of R x R into R. For example, the action of + on (2,3) € R x R is given in
function notation by +((2, 3)) = 5. In set notation we write ((2, 3),5) € +. Of course,
our familiar notationis 2+ 3 = 5. A

Cardinality

The number of elements in a set X is the cardinality of X and is often denoted by
|X|. For example, we have |{2,5,7}| = 3. It will be important for us to know whether
two sets have the same cardinality. If both sets are finite, there is no problem; we can
simply count the elements in each set. But do Z, Q, and R have the same cardinality?
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To convince ourselves that two sets X and Y have the same cardinality, we try to exhibit

a pairing of each x in X with only one y in ¥ in such a way that each element of Y is also

used only once in this pairing. For the sets X = {2,5,7} and Y = {?,, #}, the pairing
267, So# 7!

shows they have the same cardinality. Notice that we could also exhibit this pairing as

{@2, N, (5, #), (7, )} which, as a subset of X x Y, is a relation between X and Y. The

pairing

1 2 3 4 5 6 7 8 9 10
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
0 -1 1 -2 2 -3 3 -4 4 =5

shows that the sets Z and Z* have the same cardinality. Such a pairing, showing that
sets X and Y have the same cardinality, is a special type of relation <> between X and
Y called a one-to-one correspondence. Since each element x of X appears precisely
once in this relation, we can regard this one-to-one correspondence as a function with
domain X. The range of the function is ¥ because each y in Y also appears in some
pairing x <> y. We formalize this discussion in a definition.

*A function ¢ : X — Y is one-to-one or injective if ¢(x;) = ¢(x,) only when x; = x,.
The function ¢ is onto or surjective if the range of ¢ is Y. If ¢ is both injective and
surjective, ¢ is said to be bijective. [ ]

If a subset of X x Y is a one-to-one function ¢ mapping X onto Y, then each x € X
appears as the first member of exactly one ordered pair in ¢ and also each y € Y appears
as the second member of exactly one ordered pair in ¢. Thus if we interchange the first
and second members of all ordered pairs (x, y) in ¢ to obtain a set of ordered pairs (y, x),
we get a subset of Y x X, which gives a one-to-one function mapping Y onto X. This
function is called the inverse function of ¢, and is denoted by ¢~!. Summarizing, if
¢ maps X one-to-one onto Y and ¢(x) =y, then ¢! maps Y one-to-one onto X, and

7' =x

Two sets X and Y have the same cardinality if there exists a one-to-one function map-
ping X onto Y, that is, if there exists a one-to-one correspondence between X and Y.
]

The function f : R — R where f(x) = x2 is not one-to-one because f(2) = f(—2) = 4
but 2 # —2. Also, it is not onto R because the range is the proper subset of all nonneg-
ative numbers in R. However, g : R — R defined by g(x) = x> is both one-to-one and
onto R. A

We showed that Z and Z* have the same cardinality. We denote this cardinal num-
ber by Ry, so that |Z| = |Z*| = Ry. It is fascinating that a proper subset of an infinite set
may have the same number of elements as the whole set; an infinite set can be defined
as a set having this property.

We naturally wonder whether all infinite sets have the same cardinality as the set Z.
A set has cardinality 8 if and only if all of its elements could be listed in an infinite row,
so that we could “number them” using Z™. Figure 0.15 indicates that this is possible for
the set Q. The square array of fractions extends infinitely to the right and infinitely

* We should mention another terminology, used by the disciples of N. Bourbaki, in case you encounter it
elsewhere. In Bourbaki’s terminology, a one-to-one map is an injection, an onto map is a surjection, and a
map that is both one-to-one and onto is a bijection.
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downward, and contains all members of Q. We have shown a string winding its way
through this array. Imagine the fractions to be glued to this string. Taking the beginning
of the string and pulling to the left in the direction of the arrow, the string straightens
out and all elements of Q appear on it in an infinite row as 0, %, —%, 1,-1, %, ---. Thus
|Q| = R also.

Ifthe set S = {x € R|0 < x < 1} has cardinality Ry, all its elements could be listed
as unending decimals in a column extending infinitely downward, perhaps as

0.3659663426 - - -
0.7103958453 - - -
0.0358493553 - - -
0.9968452214 - - -

We now argue that any such array must omit some number in S. Surely S contains
a number r having as its nth digit after the decimal point a number different from 0,
from 9, and from the nth digit of the nth number in this list. For example, r might start
.5637- - -. The 5 rather than 3 after the decimal point shows r cannot be the first number
in § listed in the array shown. The 6 rather than 1 in the second digit shows r cannot be
the second number listed, and so on. Because we could make this argument with any
list, we see that S has too many elements to be paired with those in Z*. Exercise 15
indicates that R has the same number of elements as S. We just denote the cardinality of
R by |R|. Exercise 19 indicates that there are infinitely many different cardinal numbers
even greater than |R|.

Partitions and Equivalence Relations

Sets are disjoint if no two of them share a common element. In Example 0.17 we break
up the integers into subsets. Eventually we will see how to define an algebraic structure
on these subsets of Z. That is, we will be able to “add” two of these subsets to get another
subset. We will find that breaking a set into subsets is a valuable tool in a number of
settings, so we conclude this section with a brief study of partitions of sets.

A partition of a set S is a collection of nonempty subsets of S such that every element
of S is in exactly one of the subsets. The subsets are the cells of the partition. ]
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When discussing a partition of a set S, we denote by x the cell containing the ele-
ment x of S.

Splitting Z into the subset of even integers and the subset of odd integers, we obtain a
partition of Z into the two cells listed below.

,—8,-6,—4,-2,0,2,4,...}
,—7,-5,-3,—-1,1,3,5,...}

-l ol

={...
={...
We can think of 0 as being the integers that are divisible by 2 and 1 as the integers

that when divided by 2 yield a remainder of 1. This idea can be used for positive integers
other than 2. For example, we can partition Z into three cells:

0 = {x € Z | x is a multiple of 3},
1 = {x € Z| the remainder of x divided by 3 is 1}, and
2 = {x € Z | the remainder of x divided by 3 is 2}.

Note that when dividing a negative number by 3, we still obtain a non-negative
remainder. For example, —5 + 3 is —2 with remainder 1, which says that 5=1.

Generalizing, for each n € Z*, we obtain a partition of Z consisting of n cells,
0,1,2,...,n— 1.ForeachO<r<n-—1,an integer x is in the cell 7 exactly when the
remainder of x < nis r. These cells are the residue classes modulo 7 in Z and » is called
the modulus. We define the set Z/nZ as the set containing the cells in this partition. So,

for example, Z/3Z = {0, 1,2}. As we can see, Z/nZ = {0, 1,2,...,n — 1} has exactly
n elements. A

Each partition of a set S yields a relation .72 on S in a natural way: namely, for
x,y € S, let x A y if and only if x and y are in the same cell of the partition. In set
notation, we would write x %2 y as (x,y) € .7 (see Definition 0.7). A bit of thought
shows that this relation .72 on S satisfies the three properties of an equivalence relation
in the following definition.

An equivalence relation .72 on a set S is one that satisfies these three properties for all
X,y,Z € S.

1. (Reflexive) x 92 x.
2. (Symmetric) If x .2y, theny 72 x.
3. (Transitive) If x 2y and y .72 z then x 22 z. a

To illustrate why the relation .72 corresponding to a partition of S satisfies the sym-
metric condition in the definition, we need only observe that if y is in the same cell as x
(that is, if x .72 y), then x is in the same cell as y (that is, y 72 x). We leave the similar
observations to verify the reflexive and transitive properties to Exercise 28.

For any nonempty set S, the equality relation = defined by the subset {(x,x) | x € S} of
S x § is an equivalence relation. A

(Congruence Modulo ) Let n € Z*. The equivalence relation on Z corresponding
to the partition of Z into residue classes modulo », discussed in Example 0.17, is con-
gruence modulo n. It is sometimes denoted by =,.. Rather than write a =,b, we usu-
ally write a = b (mod n), read, “a is congruent to b modulo n.” For example, we have
15 = 27 (mod 4) because both 15 and 27 have remainder 3 when divided by 4. A
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Let a relation .72 on the set Z be defined by n %2 m if and only if nm > 0, and let us
determine whether .72 is an equivalence relation.

Reflexive a.72 a, because a® > O forall a € Z.
Symmetric Ifa %2 b, thenab > 0,s0 ba > 0 and b 22 a.
Transitive Ifa.% b and b.% c, then ab > 0 and be > 0. Thus ab*c = acb? > 0.

If we knew b? > 0, we could deduce ac > 0 whence a .72 c¢. We have to examine
the case b = 0 separately. A moment of thought shows that —3 .2 0 and 0 .72 5, but
we do not have —3 .72 5. Thus the relation .72 is not transitive, and hence is not an
equivalence relation. A

We observed above that a partition yields a natural equivalence relation. We now
show that an equivalence relation on a set yields a natural partition of the set. The
theorem that follows states both results for reference.

(Equivalence Relations and Partitions) Let S be a nonempty set and let ~ be an
equivalence relation on S. Then ~ yields a partition of S, where

a={xeS|x~a}.

Also, each partition of S gives rise to an equivalence relation ~ on S where a ~ b if and
only if a and b are in the same cell of the partition.

‘We must show that the different cells a = {x € S| x ~ a} for a € S do give a pattition of
S, so that every element of S is in some cell and so that if a € b,thena =b. Leta € S.
Then a € a by the reflexive condition (1), so a is in at least one cell.

Suppose now that a € b. We need to show that @ = b as sets; this will show that a
cannot be in more than one cell. There is a standard way to show that two sets are the
same:

Show that each set is a subset of the other.

We show that @ € b. Let x € a.Thenx ~ a.Buta € b,soa~ b. Then, by the transitive
condition (3), x ~ b, so x € b. Thus a C b. Now we show that b C a. Let y € b. Then
y ~ b.Buta € b, so a ~ b and, by symmetry (2), b ~ a. Then by transitivity (3), y ~ a,
soy € a. Hence b C aalso, so b = a and our proof is complete. *

Each cell in the partition arising from an equivalence relation is an equivalence
class.

m EXERCISES 0

In Exercises 1 through 4, describe the set by listing its elements.

1. xeR|x2=3}

2. meZ|m?®+m=6)

3. {m € Z|mn = 60 for some n € Z} 4, (xeZ|P2—10x+16 <0}

In Exercises 5 through 10, decide whether the object described is indeed a set (is well defined). Give an alternate
description of each set.

5. {n € Z* | nis a large number} 6. {(neZ|n? <0}
7. {n€ Z|39 < n® < 57}
8. {r € Q| When r is multiplied by a sufficiently large power of 2, one obtains a whole number.}

9. {x € Z* | x is an easy number to factor}

10. {x € Q|x may be written with positive denominator less than 4}
11. List the elements in {a, b, ¢} x {1,2,c}.



12.

13.

14.

15.
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Let A = {1,2,3} and B = {2,4,6}. For each relation between A and B given as a subset of A x B, decide
whether it is a function mapping A into B. If it is a function, decide whether it is one-to-one and whether it is
onto B.

a. {{1,2},{2,6}, (3.4} b. [[1,3] and [5,7]]
¢ {(1,6),(1,2), (1, 4)} d. {{2,2}, {3, 6}, {1, 6}}
e. {(1,6),(2,6),(3,6)} f. {{1,2}, {2, 6}}

Illustrate geometrically that two line segments AB and CD of different lengths have the same number of points
by indicating in Fig. 0.23 what point y of CD might be paired with point x of AB.

Recall that for a,b € R and a < b, the closed interval [a,b] in R is defined by [a,b] = {x e Rla <x <
b}. Show that the given intervals have the same cardinality by giving a formula for a one-to-one function
f mapping the first interval onto the second.

a. [0, 1] and [0, 2] b. [1,3]and [5, 7] ¢. [a,b] and [c,d]

Show that § = {x € R|0 < x < 1} has the same cardinality as R. [Hint: Find an elementary function of cal-
culus that maps an interval one-to-one onto R, and then translate and scale appropriately to make the domain
the set S.]

For any set A, we denote by &2 (A) the collection of all subsets of A. For example, if A = {a, b, ¢, d}, then {a,b,d} €
2 (A). The set & (A) is the power set of A. Exercises 16 through 19 deal with the notion of the power set of a
set A.

16.

17.

18.

19.

20.

21.

List the elements of the power set of the given set and give the cardinality of the power set.
a. g b. {a} c. {a,b} d. {a,b,c}

Let A be a finite set, and let |A| = s. Based on the preceding exercise, make a conjecture about the value of
|2? (A)|. Then try to prove your conjecture.

For any set A, finite or infinite, let B4 be the set of all functions mapping A into the set B = {0, 1}. Show that
the cardinality of B is the same as the cardinality of the set & (A). [Hint: Each element of B# determines a
subset of A in a natural way.]

Show that the power set of a set A, finite or infinite, has too many elements to be able to be put in a one-to-one
correspondence with A. Explain why this intuitively means that there are an infinite number of infinite cardinal
numbers. [Hint: Imagine a one-to-one function ¢ mapping A into & (A) to be given. Show that ¢ cannot be
onto & (A) by considering, for each x € A, whether x € ¢(x) and using this idea to define a subset S of A that
is not in the range of ¢.] Is the set of everything a logically acceptable concept? Why or why not?

LetA = {1,2} and let B = {3,4,5}.

a. Illustrate, using A and B, why we consider that 2 + 3 = 5. Use similar reasoning with sets of your own
choice to decide what you would consider to be the value of

i. 3+ R, ii. Ro + Rg.

b. Illustrate why we consider that 2 - 3 = 6 by plotting the points of A x B in the plane R x R. Use similar
reasoning with a figure in the text to decide what you would consider to be the value of Rg - Ro.

How many numbers in the interval 0 < x < 1 can be expressed in the form .##, where each # is a digit
0,1,2,3,---,9? How many are there of the form #####? Following this idea, and Exercise 15, decide what
you would consider to be the value of 10%. How about 12%¢ and 2%?
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22. Continuing the idea in the preceding exercise and using Exercises 18 and 19, use exponential notation to fill
in the three blanks to give a list of five cardinal numbers, each of which is greater than the preceding one.

Ro, IR|, —, —,
In Exercises 23 through 27, find the number of different partitions of a set having the given number of elements.
23. 1 element 24. 2 elements 25. 3 elements
26. 4 elements 27. 5 elements

28. Consider a partition of a set S. The paragraph following Definition 0.18 explained why the relation
x Ay if and only if x and y are in the same cell

satisfies the symmetric condition for an equivalence relation. Write similar explanations of why the reflexive
and transitive properties are also satisifed.

In Exercises 29 through 34, determine whether the given relation is an equivalence relation on the set. Describe
the partition arising from each equivalence relation.

29. nminZifnm > 0 30. x ZyinRifx>y

31. x 2 yin Z* if the greatest common divisor of x and y is greater than 1

32, (1, y1) Z2 (x2,y2) in R x Rifx? +y2 =22 + 3

33. n.%2 min Z7 if n and m have the same number of digits in the usual base ten notation
34. n. %8 min Z* if n and m have the same final digit in the usual base ten notation

35. Using set notation of the form {...,##,#,-. -}, write the residue classes modulo n in Z as discussed in
Example 0.17 for the indicated values of n.

a. 3 b. 4 [ ]
36. Write each set by listing its elements.
a. Z/3Z b. Z/4Z ¢ Z/5Z

37. When discussing residue classes, 1 is not well defined until the modulus 7 is given. Explain.

38. Let n € Z* and let ~ be defined on Z by r ~ s if and only if r — s is divisible by n, that is, if and only if
r — s = nq for some g € Z.
a. Show that ~ is an equivalence relation on Z.
b. Show that this ~ is the equivalence relation, congruence modulo n, of Example 0.20.

39. Let n € Z*. Using the relation from Exercise 38, show that if a; ~ ay and b ~ by, then (a; + by)
~ (a2 + b2).
40. Let n € Z*. Using the relation from Exercise 38, show that if a; ~ az and b; ~ by, then (a1b1) ~ (a2b2).

41. Students often misunderstand the concept of a one-to-one function (mapping). I think I know the reason. You
see, a mapping ¢ : A — B has a direction associated with it, from A to B. It seems reasonable to expect a
one-to-one mapping simply to be a mapping that carries one point of A into one point of B, in the direction
indicated by the arrow. But of course, every mapping of A into B does this, and Definition 0.12 did not say
that at all. With this unfortunate situation in mind, make as good a pedagogical case as you can for calling the
functions described in Definition 0.12 two-to-two functions instead. (Unfortunately, it is almost impossible to
get widely used terminology changed.)
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BINARY OPERATIONS

The transition from elementary school arithmetic to high school algebra involves using
letters to represent unknown numbers and studying the basic properties of equations and
expressions. The two main binary operations used in high school algebra are addition
and multiplication. Abstract algebra takes the next step in abstraction. Not only are
the variables unknown, but the actual operations involved may be unknown! We will
study sets that have binary operations with properties similar to those of addition and
multiplication of numbers. In Part I, our goal will be to develop some of the basic
properties of a group. In this section we start our investigation of groups by defining
binary operations, naming properties possessed by some binary operations, and giving
examples.

Definitions and Examples

The first step in our journey to understand groups is to give a precise mathematical
definition of a binary operation that generalizes the familiar addition and multiplication
of numbers. Recall that for any set S, Definition 0.4 defines the set S x S to contain all
ordered pairs (a, b) witha,b € S.

A binary operation * on a set S is a function mapping S x S into S. For each (a,b) €
S x S, we will denote the element *((a, b)) of S by a * b. ]

Intuitively, we may regard a binary operation * on S as assigning, to each ordered
pair (a, b) of elements of S, an element a * b of S.

Binary refers to the fact that we are mapping pairs of elements from S into S. We
could also define a ternary operation as a function mapping triples of elements of S to S,
but we will have no need for this type of operation. Throughout this book we will often
drop the term binary and use the term operation to mean binary operation.

Our usual addition + is an operation on the set R. Our usual multiplication - is a
different operation on R. In this example, we could replace R by any of the sets C, Z,
R*, or Z*. A

11
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Note that we require an operation on a set S to be defined for every ordered pair
(a, b) of elements from S.

Let M(R) be the set of all matrices™ with real entries. The usual matrix addition + is
not an operation on this set since A + B is not defined for an ordered pair (A, B) of
matrices having different numbers of rows or of columns. A

Sometimes an operation on S provides an operation on a subset H of S also. We
make a formal definition.

Let * be an operation on S and let H be a subset of S. The subset H is closed under
* if for all a,b € H we also have a x b € H. In this case, the operation on H given by
restricting * to H is the induced operation of x on H. ||

By our very definition of an operation * on S, the set S is closed under *, but a
subset may not be, as the following example shows.

Our usual addition + on the set R of real numbers does not induce an operation on the
set R* of nonzero real numbers because 2 € R* and —2 € R*, but 2 + (—2) = 0 and
0 ¢ R*. Thus R* is not closed under *. A

In our text, we will often have occasion to decide whether a subset H of S is closed
under a binary operation * on S. To arrive at a correct conclusion, we have to know what
it means for an element to be in H, and to use this fact. Students often have trouble here.
Be sure you understand the next example.

Let + and - be the usual operations of addition and multiplication on the set Z,
and let H = {n?|n € Z*}. Determine whether H is closed under (a) addition and
(b) multiplication.

For part (a), we need only observe that 12 = 1 and 22 = 4 are in H, but that
1+4=>5and5 ¢ H. Thus H is not closed under addition.

For part (b), suppose that r € H and s € H. Using what it means for r and s to be

in H, we see that there must be integers n and m in Z* such that r = n? and s = m?.

Consequently, 7s = n>m? = (nm)?. By the characterization of elements in H and the fact

that nm € Z™, this means that rs € H, so H is closed under multiplication. A

Let F be the set of all real-valued functions f having as domain the set R of real numbers.
We are familiar from calculus with the operations +, —, -, and o on F. Namely, for each
ordered pair (f, g) of functions in F, we define for each x € R

f+gby(f + 8 =f(x)+ g(x) addition,
f—gby (f — g)(x) =f(x) — g(x) subtraction,
f-gby (f- 9 =f(x)gx) multiplication, and
fogby (fog)x)=f(gkx) composition.

All four of these functions are again real valued with domain R, so F is closed under all
four operations +, —, -, and o. A

The operations described in the examples above are very familiar to you. In this
text, we want to abstract basic structural concepts from our familiar algebra. To empha-

T Most students of abstract algebra have studied linear algebra and are familiar with matrices and matrix
operations. For the benefit of those students, examples involving matrices are often given. The reader who is
not familiar with matrices can either skip all references to them or turn to the Appendix at the back of the text,
where there is a short summary.
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size this concept of abstraction from the familiar, we should illustrate these structural
concepts with unfamiliar examples.

The most important method of describing a particular binary operation * on a given
set is to characterize the element a * b assigned to each pair (a,b) by some property
defined in terms of @ and b.

On Z*, we define an operation * by a * b equals the smaller of a and b, or the common
valueifa=>b. Thus 2% 11 =2;15% 10 = 10; and 3 * 3 = 3. A

On Z*, we define an operation *' by a ' b = a. Thus 2 ¥’ 3 = 2;25 ' 10 = 25; and
5%'5=>5. A

On Z*, we define an operation *” by a *” b = (a x b) + 2, where * is defined in Exam-
ple 1.8. Thus 4 " 7 = 6;25 %" 9 = 11; and 6 +” 6 = 8. A

It may seem that these examples are of no importance, but in fact they are used mil-
lions of times each day. For example, consider the GPS navigational system installed
in most cars and cell phones. It searches alternative driving routes, computes the travel
time, and determines which route takes less time. The operation in Example 1.8 is pro-
grammed into modern GPS systems and it plays an essential role.

Examples 1.8 and 1.9 were chosen to demonstrate that an operation may or may
not depend on the order of the given pair. Thus in Example 1.8, a % b = b x a for all
a,b € Z*, and in Example 1.9 this is not the case, for 5%’ 7 =5but 7+ 5 =17.

An operation * on a set S is commutative if (and only if) a b = bx*a for all
a,bes. ]

As was pointed out in Section 0, it is customary in mathematics to omit the words
and only if from a definition. Definitions are always understood to be if and only if
statements. Theorems are not always if and only if statements, and no such convention
is ever used for theorems.

Now suppose we wish to consider an expression of the form a*b*c. A bi-
nary operation * enables us to combine only two elements, and here we have three.
The obvious attempts to combine the three elements are to form either (a * b) * ¢ or
ax (bxc). With * defined as in Example 1.8, (2% 5) %9 is computed by 2 %5 =2
and then 2 x 9 = 2. Likewise, 2 * (5 % 9) is computed by 5% 9 = 5 and then 2 % 5 = 2.
Hence (2 % 5) * 9 = 2 % (5 % 9), and it is not hard to see that for this *,

(@axb)yxc=ax®bxc),
so there is no ambiguity in writing a * b * c. But for *” of Example 1.10,
2+'5)%"9=4%x"9=6,
while
24" (5+"9)=2+"7=4.

Thus (a*” b) *” ¢ need not equal a*” (b«"c), and the expression a*"b*"c is
ambiguous.

An operation on a set S is associative if (a xb) xc =ax (bxc)foralla,b,ce€S. N

It can be shown that if * is associative, then longer expressions such as a * b *
¢ * d are not ambiguous. Parentheses may be inserted in any fashion for purposes of
computation; the final results of two such computations will be the same.
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Composition of functions mapping R into R was reviewed in Example 1.7. For any
set S and any functions f and g mapping S into S, we similarly define the composition
f o g of g followed by f as the function mapping S into S such that (f o g)(x) = f(g(x))
for all x € S. Some of the most important binary operations we consider are defined
using composition of functions. It is important to know that function composition is
always associative whenever it is defined.

(Associativity of Composition) Let S be a set and letf, g, and & be functions mapping
Sinto S. Thenfo(goh)=(fog)oh.

To show these two functions are equal, we must show that they give the same assignment
to each x € S. Computing we find that

(f o (g 0 W)(x) = f((g o M(x)) = f(g(A(x)))
and
((f 0 8) o W)(x) = (f 0 &)(h(x)) = f(g(A(x))),
so the same element f(g(h(x))) of S is indeed obtained. *

As an example of using Theorem 1.13 to save work, recall that it is a fairly painful
exercise in summation notation to show that multiplication of n x n matrices is an asso-
ciative operation. If, in a linear algebra course, we first show that there is a one-to-one
correspondence between matrices and linear transformations and that multiplication of
matrices corresponds to the composition of the linear transformations (functions), we
obtain this associativity at once from Theorem 1.13.

There is another property that an operation on a set may have that is of particular
importance in algebra. The numbers 0 and 1 play special roles as real numbers because
for any real number a,a + 0 = a and a x 1 = a. Because of these properties, 0 is called
the additive identity in R and 1 is called the multiplicative identity in R. In general we
have the following definition of an identity.

Let S be a set with binary operation . If e € S has the property that for all a € S,
a*e = e*a= a,then e is called an identity element for x. [ ]

We included both conditions a x ¢ = a and e * a = a in the definition of an identity
because we are not assuming that the operation on S is commutative. Of course, if the
operation is commutative, such as + and x on the real numbers, then we would only
have to check one of the conditions and the other follows from commutativity.

(Uniqueness of Identity) A set with binary operation * has at most one identity
element.

We need to show that there cannot be two different identity elements. To do this, we
assume that both e and ¢’ are identities and show that e = ¢’. Consider the element
e * €. Since e is an identity, ¢ * ¢ = ¢’. But e x ¢’ = e because ¢ is also an identity.
Therefore e = €. *

Continuing with Example 1.7, let F be the set of all functions mapping the real numbers
to the real numbers. We verify that the function defined by (x) = x is the identity for the
operation function composition. Let f € F. Then f o 1(x) = f(1(x)) = f(x) and ¢ o f(x) =
) =f).

The function m(x) = 1 is the identity for the operation function multiplication,
a(x) = 0 is the identity for function addition, but function subtraction has no identity
element. A
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The last property that we consider in this section is the existance of inverse ele-
ments. For addition, the inverse of a real number a is —a. Using multiplication, the
inverse of a nonzero real number a is % ‘We now give the formal definition of an inverse
for an element x.

If * is an operation on the set S and $ has an identity e, then for any x € S, the inverse
of x is an element x’ such that x * X' = X' *x = e. [ ]

Continuing Example 1.16, let F be the set of functions mapping the real numbers to
the real numbers with operation function composition. We have two definitions for the
inverse of a function f € F, the usual definition of an inverse function and Definition
1.17. The two definitions match since both say that an inverse for f is a function f’
such that f o f = f' of = t. So f € F has an inverse if and only if f is one-to-one and
onto. A

Tables

For a finite set, a binary operation on the set can be defined by means of a table in which
the elements of the set are listed across the top as heads of columns and at the left side
as heads of rows. We always require that the elements of the set be listed as heads across
the top in the same order as heads down the left side. The next example illustrates the
use of a table to define a binary operation.

Table 1.20 defines the binary operation * on S = {a, b, c} by the following rule:

(ith entry on the left) x (jth entry on the top)
= (entry in the ith row and jth column of the table body).

Thus a * b = c and b * a = a, so * is not commutative. A

We can easily see that a binary operation defined by a table is commutative
if and only if the entries in the table are symmetric with respect to the diagonal
that starts at the upper left corner of the table and terminates at the lower right
corner.

Complete Table 1.22 so that * is a commutative operation on the set S = {a, b, ¢, d}.

From Table 1.22, we see that b x a = d. For * to be commutative, we must have a
b = d also. Thus we place d in the appropriate square defining a * b, which is located
symmetrically across the diagonal in Table 1.23 from the square defining b * a. We

obtain the rest of Table 1.23 in this fashion to give our solution. A

1.22 Table 1.23 Table
*la|b|c|d

\ a|b|c|d
alb

a \b\ d|a|a
b|d|a

bla|alc|p
c a c
d|a b | c clelc¢ >\ b

al|b|b]>
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‘When an operation has an identity element, it is customary to put the identity first in the
list of heads. This makes the first row and the first column match the head row and head
column as seen in Table 1.25. A

Some Words of Warning

Classroom experience shows the chaos that may result if a student is given a set and
asked to define some binary operation on it. Remember that in an attempt to define a
binary operation * on a set S we must be sure that

1. exactly one element is assigned to each possible ordered pair of elements of S,
2. for each ordered pair of elements of S, the element assigned to it is again in S.

Regarding Condition 1, a student will often make an attempt that assigns an element
of S to “most” ordered pairs, but for a few pairs, determines no element. In this event,
* is not everywhere defined on S. It may also happen that for some pairs, the at-
tempt could assign any of several elements of S, that is, there is ambiguity. In any case
of ambiguity, * is not well defined. If Condition 2 is violated, then S is not closed
under *.

On which of the sets Q, Q*, and Z* does the formula a * b = a/b define an operation?
Note that this formula does not make sense in the case that b = 0. So for example,
2 %0 =2/0 is not defined, which means Condition 1 is not satisfied. So * is not an
operation on Q.

If we throw out 0, we do have an operation on Q* since both Conditions 1 and 2
are satisfied. That is, for any a,b € Q*, a * b = a/b is a nonzero rational number.

The set Z* does not include 0, but there is another issue. For example, 1 2 =
1/2 ¢ Z, which means that Condition 2 is violated and * is not an operation on Z*.A

Following are several illustrations of attempts to define operations on sets. Some
of them need some work! The symbol * is used for the attempted operation in all these
examples.

Let F be the set of all real-valued functions with domain R as in Example 1.7. Suppose
we “define” * to give the usual quotient of f by g, that is, f x g = h, where h(x) =
f(x)/g(x). Here Condition 2 is violated, for the functions in F are defined for all real
numbers, and for some g € F, g(x) will be zero for some values of x in R and h(x)
would not be defined at those numbers in R. For example, if f(x) = cos x and g(x) = x2,
then A(0) is undefined, so h ¢ F. A

Let F be as in Example 1.27 and let f * g = h, where h is the function greater than both
f and g. This “definition” is extremely vague. In the first place, we have not defined
what it means for one function to be greater than another. Even if we had, any sensible
definition would result in there being many functions greater than both f and g, and *
would still be not well defined. A

Let S be a set consisting of 20 people, no two of whom are of the same height. Define
* by a x b = ¢, where c is the tallest person among the 20 in S. This is a perfectly good
binary operation on the set, although not a particularly interesting one. A

Let S be as in Example 1.29 and let a * b = ¢, where c is the shortest person in § who
is taller than both a and b. This * is not everywhere defined, since if either a or b is the
tallest person in the set, a * b is not determined. A
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m EXERCISES 1

Computations

Exercises 1 through 4 concern the binary operation * defined on S = {a, b, ¢, d, e} by means of Table 1.31.
1. Compute b *x d,c * ¢, and [(a * ) * €] * a.
2. Compute (a * b) * ¢ and a * (b * ¢). Can you say on the basis of this computation whether * is associative?
3. Compute (b * d) * ¢ and b * (d * c). Can you say on the basis of this computation whether * is associative?
4. Is * commutative? Why?
5. Complete Table 1.32 so as to define a commutative binary operation * on S = {a, b, c,d}.

6. Table 1.33 can be completed to define an associative binary operation * on S = {a, b, ¢,d}. Assume this is
possible and compute the missing entries. Does S have an identity element?

1.31 Table 1.32 Table 1.33 Table
*la|b|c|d|e *la|b|c|d *la|b|c|d
ala|b|c|b|d ala|b|c ala|b|c|d
b|l|b|c|a|e]|c b|b|d c b|b cl|ld
clcla|b|b|a clclal|ld|b clc|d|c|d
d|ble|ble|d d|d a d
e|ld|b|a|d|c

In Exercises 7 through 11, determine whether the operation * is associative, whether the operation is commutative,
and whether the set has an identity element.

7. * defined on Z by lettingaxb =a — b

8. * defined on Q by lettinga x b =2ab + 3

9. * defined on Z by lettingaxb =ab+a+b
10. * defined on Z by letting a % b = 29
11. * defined on Zt by letting a * b = a®

12. Let S be a set having exactly one element. How many different binary operations can be defined on S? Answer
the question if S has exactly 2 elements; exactly 3 el ts; exactly n el ts.

13. How many different commutative binary operations can be defined on a set of 2 elements? on a set of 3
elements? on a set of n elements?

14. How many different binary operations on a set S with n elements have the property that for all x € S, x * x = x?
15. How many different binary operations on a set S with n elements have an identity element?

Concepts

In Exercises 16 through 19, correct the definition of the italicized term without reference to the text, if correction
is needed, so that it is in a form acceptable for publication.

16. A binary operation * is commutative if and only if a x b = b * a.

17. A binary operation * on a set S is associative if and only if, for all a,b,c €S, we have
(b*xc)xa=Dbx*(c*a).

18. A subset H of a set S is closed under a binary operation * on § if and only if (a * b) € H foralla,b € S.
19. An identity in the set S with operation * is an element ¢ € Ssuch thataxe = e*xa =a.

20. Is there an example of a set S, a binary operation on S, and two different elements e, e, € S such that for all
a €S, el xa=aanda* ey = a?If so, give an example and if not, prove there is not one.
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In Exercises 21 through 26, determine whether the definition of * does give a binary operation on the set. In the
event that * is not a binary operation, state whether Condition 1, Condition 2, or both conditions regarding defining
binary operations are violated.
21. On Z*, define a x b = b°.
22. On R™, define * by letting a * b = 2a — b.
23. On R*, define * by a * b to be the minimum of a and b — 1 if they are different and their common value if
they are the same.
24. On R, define a * b to be the number ¢ so that ¢* = a.
25. On Z*, define * by letting a x b = ¢, where c is at least 5 more than a + b.
26. On Z*, define * by letting a x b = ¢, where c is the largest integer less than the product of a and b.
27. Let H be the subset of M>(R) consisting of all matrices of the form [Z _Z] for a,b € R.Is H closed under
a. matrix addition? b. matrix multiplication?
28. Determine whether each of the following is true or false.
a. If x is any binary operation on any set S, thena xa = aforalla € S.
b. If % is any commutative binary operation on any set S, thena x (b *x¢) = (b*c) xaforalla,b,c € S.
¢. If * is any associative binary operation on any set S, thena* (b*c) = (b *c) xa foralla,b,c € S.
d. The only binary operations of any importance are those defined on sets of numbers.
e. A binary operation * on a set S is commutative if there exist a,b € Ssuchthataxb =b=xa.
Every binary operation defined on a set having exactly one element is both commutative and associative.
g. A binary operation on a set S assigns at least one element of S to each ordered pair of elements of S.
h. A binary operation on a set S assigns at most one element of S to each ordered pair of elements of S.
i. A binary operation on a set S assigns exactly one element of S to each ordered pair of elements of S.

J- A binary operation on a set S may assign more than one element of S to some ordered pair of
elements of S.

k. For any binary operation * on the set S, if a,b,c € Sandaxb =axc,thenb =c.

1. For any binary operation * on the set S, there is an element e € S such that forallx € §,xxe = x.
m. There is an operation on the set S = {e1,e3,a} sothatforallx € S,e; *x = ep xx = x.

Identity elements are always called e.

ad

29. Give a set different from any of those described in the examples of the text and not a set of numbers. Define
two different binary operations * and *’ on this set. Be sure that your set is well defined.

Theory

30. Prove that if * is an associative and commutative binary operation on a set S, then

(@xb)*x(cxd)=[(d*xc)xal b
for all a, b, c,d € S. Assume the associative law only for triples as in the definition, that is, assume only
(xxy)xz=x%(y*2)

forall x,y,z € S.

In Exercises 31 and 32, either prove the statement or give a counterexample.

31. Every binary operation on a set consisting of a single element is both commutative and associative.

32. Every commutative binary operation on a set having just two elements is associative.

Let F be the set of all real-valued functions having as domain the set R of all real numbers. Example 1.7 defined
the binary operations +, —, -, and o on F. In Exercises 33 through 41, either prove the given statement or give a
counterexample.

33. Function addition + on F is associative.
34. Function subtraction — on F is commutative.
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Function subtraction — on F is associative.

Under function subtraction — F has an identity.

Under function multiplication - F has an identity.

Function multiplication - on F is commutative.

Function multiplication - on F is associative.

Function composition o on F is commutative.

If * and %’ are any two binary operations on a set S, then

ax(b¥c)=(axb)¥ (axc) forall ab,ceS.

Suppose that * is an associative binary operation on a set S. Let H ={a € S|a*xx =xxa for all x € §}.
Show that H is closed under *. (We think of H as consisting of all elements of S that commute with every

element in S.)

Suppose that * is an associative and commutative binary operation on a set S. Show that H = {a € S|axa =
a} is closed under *. (The elements of H are idempotents of the binary operation *.)

Let S be a set and let * be a binary operation on S satisfying the two laws

® xxx=xforalls €S, and
® (xxy)xz=(yxz)xxforallx,y,z€S.

Show that * is associative and commutative. (This is problem B-1 on the 1971 Putnam Competition.)

SECTION 2

GROUPS

In high school algebra, one of the key objectives is to learn how to solve equations.
Even before learning algebra, students in elementary school are given problems like
540 =2or2 x O =3, which become 5 4+ x = 2 and 2x = 3 in high school algebra.
Let us closely examine the steps we use to solve these equations:

S54+x=2, given,
—54+G6+x)=-5+2, adding -5,
(=5+45)+x=-5+2, associative law,

0+x=-5+4+2, computing—5+35,

x=-5+42, property of 0,
x=-3, computing — 5 + 2.

Strictly speaking, we have not shown here that —3 is a solution, but rather that it is
the only possibility for a solution. To show that —3 is a solution, one merely computes
5+ (—3). A similar analysis could be made for the equation 2x = 3 in the rational
numbers with the operation of multiplication:
2x =3, given,
3(20) = 5(3), multiplying by 3,
(% < 2Dx = %3, associative law,
1-x= %3, computing %2,
x= %3, property of 1,

x= %, computing %3.

Now suppose that we have a set with a binary operation *. What properties does
the operation need to have in order to solve an equation of the form a % x = b where a
and b are fixed elements of S? Both equations 5 + x = 2 and 2x = 3 have this form; the
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first uses the operation +, and the second uses the operation x. By examining the steps
used we can see what properties of the operation * are required as summarized in the
table below.

Property | + | x
Associative Property | =5+ (5+x) =(-5+5)+x | ;@) =G -2x
Identity Element 0:0+x=x I:1.-x=x
Inverse Element -5 -545=0 %: % -2=1

If S is a set with an operation * satisfying these three properties, then an equation
of the form a * x = b could be solved for x using exactly the same steps used to solve
5 4+ x = 2 or 2x = 3. These three essential properties are all that is required in order to
have a group. We are now ready to present the precise definition.

Definition and Examples

A group (G, *) is a set G, closed under a binary operation *, such that the following
axioms are satisfied:

“:Forall a,b,c € G, we have
(@axb)xc=a=*(bx*c). associativity of *
%: There is an element e in G such that for all x € G,
exx=x%e=ux. identity element e for *
% Corresponding to each a € G, there is an element @’ in G such that
axd =d xa=e. inversed ofa [ ]
(R, +) is a group with identity element 0 and the inverse of any real number a is —a.
However, (R, -) is not a group since 0 has no multiplicative inverse. We were still able
to solve 2x = 3 in the example above because (R*,-) is a group since multiplication

of real numbers is associative, 1 is an identity, and every real number except 0 has an
inverse. A

It is often convenient to say that G is a group under the operation * rather than
write (G, *) is a group. At times, there is only one obvious operation that makes (G, *)
a group. In this case, we may abuse notation and say that G is a group. For example, if
we say that R is a group, we mean that R is a group under addition.

A group G is abelian if its binary operation is commutative. u

Let us give some examples of some sets with binary operations that give groups
and also of some that do not give groups.

The set Z* under addition is not a group. There is no identity element for +in Z+. A

The set of all nonnegative integers (including 0) under addition is still not a group. There
is an identity element 0, but no inverse for 2. A
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m HISTORICAL NOTE

here are three historical roots of the develop-

ment of abstract group theory evident in the
mathematical literature of the nineteenth century:
the theory of algebraic equations, number theory,
and geometry. All three of these areas used group-
theoretic methods of reasoning, although the meth-
ods were considerably more explicit in the first
area than in the other two.

One of the central themes of geometry in the
nineteenth century was the search for invariants
under various types of geometric transformations.
Gradually attention became focused on the trans-
formations themselves, which in many cases can
be thought of as elements of groups.

In number theory, already in the eighteenth
century Leonhard Euler had considered the re-
mainders on division of powers a”" by a fixed prime
p. These remainders have “group” properties.

Similarly, Carl F. Gauss, in his Disquisitiones
Arithmeticae (1800), dealt extensively with
quadratic forms ax® + 2bxy + cy?, and in particu-
lar showed that equivalence classes of these forms
under composition possessed what amounted to
group properties.

Finally, the theory of algebraic equations pro-
vided the most explicit prefiguring of the group
concept. Joseph-Louis Lagrange (1736-1813) in
fact initiated the study of permutations of the roots
of an equation as a tool for solving it. These per-
mutations, of course, were ultimately considered as
elements of a group.

It was Walther von Dyck (1856-1934) and
Heinrich Weber (1842-1913) who in 1882 were
able independently to combine the three historical
roots and give clear definitions of the notion of an
abstract group.

2.6 Example

show that Z, Q, R, and C under addition are abelian groups.

2.7 Example
of 3.

The familiar additive properties of integers and of rational, real, and complex numbers

A

The set Z* under multiplication is not a group. There is an identity 1, but no inverse

A

m HISTORICAL NOTE

ommutative groups are called abelian in

honor of the Norwegian mathematician Niels
Henrik Abel (1802-1829). Abel was interested in
the question of solvability of polynomial equa-
tions. In a paper written in 1828, he proved that if
all the roots of such an equation can be expressed
as rational functions f, g, . . ., h of one of them, say
x, and if for any two of these roots, f(x) and g(x),
the relation f(g(x)) = g(f(x)) always holds, then
the equation is solvable by radicals. Abel showed
that each of these functions in fact permutes the
roots of the equation; hence, these functions are el-
ements of the group of permutations of the roots. It
was this property of commutativity in these permu-
tation groups associated with solvable equations
that led Camille Jordan in his 1870 treatise on al-
gebra to name such groups abelian; the name since

then has been applied to commutative groups in
general.

Abel was attracted to mathematics as a
teenager and soon surpassed all his teachers in Nor-
way. He finally received a government travel grant
to study elsewhere in 1825 and proceeded to Berlin,
where he befriended August Crelle, the founder of
the most influential German mathematical journal.
Abel contributed numerous papers to Crelle’s Jour-
nal during the next several years, including many
in the field of elliptic functions, whose theory he
created virtually single-handedly. Abel returned to
Norway in 1827 with no position and an abundance
of debts. He nevertheless continued to write bril-
liant papers, but died of tuberculosis at the age of
26, two days before Crelle succeeded in finding a
university position for him in Berlin.
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The familiar multiplicative properties of rational, real, and complex numbers show that
the sets Q@+ and R* of positive numbers and the sets Q*, R*, and C* of nonzero numbers
under multiplication are abelian groups. A

The set of all real-valued functions with domain R under function addition is a group.
This group is abelian. A

(Linear Algebra) Those who have studied vector spaces should note that the axioms
for a vector space V pertaining just to vector addition can be summarized by asserting
that V under vector addition is an abelian group. A

The set My,x,(R) of all m x n matrices under matrix addition is a group. The m x n
matrix with all entries 0 is the identity matrix. This group is abelian. A

The set M,(R) of all n x n matrices under matrix multiplication is not a group. The
n x n matrix with all entries 0 has no inverse. A

Each of the groups we have seen in the above examples is an abelian group. There
are many examples of groups which are not abelian, two of which we now present.

Here we give an example of a group that is not abelian. We let T be the set of all
isometries of the plane. An isometry of the plane is a function mapping the plane to
the plane which preserves distance. So if ¢ is an isometry of the plane and P, Q are
points in the plane, then the distance between P and Q is the same as the distance
between ¢(P) and ¢(Q). Isometries of the plane map the plane one-to-one and onto
itself. Examples of isometries include translations and rotations of the plane. The set T
under the operation of composition forms a group. To verify this we first must check that
function composition is an operation. Certainly, the composition of two isometries is an
isometry since each preserves distance. So function composition gives an operation on
T. Theorem 1.13 states that function composition is associative, so & is satisfied. The
identity function ¢ that maps each point P in the plane to itself gives an identity element
in 7, which means that % is satisfied. Finally, for any isometry ¢, the inverse function
¢! is also an isometry and it serves as an inverse as defined in &. Therefore T is a
group under function composition.

To show that 7 is not abelian, we only need to find two isometries ¢ and 6 such
that ¢ 0 0 # 6 o ¢. The functions ¢(x,y) = (—x,y) (reflection across the y-axis) and
6(x,y) = (—y, x) (rotation by 7 /2 about the origin) foot the bill. Note that ¢ o 6(1,0) =
$(6(1,0)) = ¢(0,1) = (0,1) and 6 o ¢(1,0) = 6(¢(1,0)) = 6(—1,0) = (0, —1), which
implies that ¢ 0 0 # 6 o ¢ and T is not an abelian group under function composition.

A

Show that the subset S of M,,(R) consisting of all invertible n x n matrices under matrix
multiplication is a group.

We start by showing that S is closed under matrix multiplication. Let A and B be in S,
so that both A~! and B~! exist and AA~! = BB~! = I,,. Then
AB)B A Yy=ABB YA ! =ALA =1,
so that AB is invertible and consequently is also in .
Since matrix multiplication is associative and I, acts as the identity element, and

since each element of S has an inverse by definition of S, we see that S is indeed a group.
This group is not commutative. A

The group of invertible n x n matrices described in the preceding example is of
fundamental importance in linear algebra. It is the general linear group of degree n,



2.15 Example

2.16 Theorem

Proof

Section 2  Groups 23

and is usually denoted by GL(n, R). Those of you who have studied linear algebra know
that a matrix A in GL(n, R) gives rise to an invertible linear transformation 7 : R* —
R", defined by T(x) = Ax, and that conversely, every invertible linear transformation
of R” into itself is defined in this fashion by some matrix in GL(n, R). Also, matrix
multiplication corresponds to composition of linear transformations. Thus all invertible
linear transformations of R” into itself form a group under function composition; this
group is usually denoted by GL(R"). Since the sets GL(R") and GL(n,R) and their
operations are essentially the same, we say that the two groups are isomorphic. We give
a formal definition later in this section.

We conclude our list of examples of groups with one that may seem a bit contrived.
We include it to show that there are many ways to define groups and to illustrate the
steps needed to verify that a given set with an operation is a group.

Let * be defined on Q* by a * b = ab/2. Then

ab abc
(a*b)*c-;*c-T,
and likewise
a*(b*c):a*lz=‘ﬂ.
2 4

Thus * is associative. Computation shows that
2xa=ax2=a
for all a € Q7, s0 2 is an identity element for . Finally,
4 4
ax—-=-—%xa=2,
a a

sod = 4/ais an inverse for a. Hence Q with the operation * is a group. A

Elementary Properties of Groups

As we proceed to prove our first theorem about groups, we must use Definition 2.1,
which is the only thing we know about groups at the moment. The proof of a second
theorem can employ both Definition 2.1 and the first theorem; the proof of a third theo-
rem can use the definition and the first two theorems, and so on.

Our first theorem will establish cancellation laws. In real number arithmetic, we
know that 2a = 2b implies that a = b. We need only divide both sides of the equation
2a = 2b by 2, or equivalently, multiply both sides by %, which is the multiplicative
inverse of 2. We parrot this proof to establish cancellation laws for any group. Note that
we will also use the associative law.

If G is a group with binary operation *, then the left and right cancellation laws
hold in G, that is, a@ * b = a * ¢ implies b = ¢, and b * a = ¢ * a implies b = ¢ for all
a,b,c € G.

Suppose a * b = a * c. Then by %, there exists a’, and
dx(axb)y=d *(axc).
By the associative law,
@ *xa)xb=(d xa)xc.
By the definition of @’ in &3,d’ *a = e, so

exb=exc.



24

PartI

2.17 Theorem

Proof

2.18 Theorem

Proof

Groups and Subgroups

By the definition of ¢ in &,
b=c.

Similarly, from b * a = ¢ * a one can deduce that b = ¢ upon multiplication on the right
by a’ and use of the axioms for a group. *

Our next proof can make use of Theorem 2.16. We show that a “linear equation” in
a group has a unique solution. Recall that we chose our group properties to allow us to
find solutions of such equations.

If G is a group with binary operation x, and if a and b are any elements of G, then the
linear equations a * x = b and y % a = b have unique solutions x and y in G.

First we show the existence of at least one solution by just computing that @’ b is a
solution of a * x = b. Note that

a*(a@ *b) = (a*xd)*b, associative law,
=exbh, definition of @/,
=b, property of e.

Thus x = a’ x b is a solution of a * x = b. In a similar fashion, y = b * @’ is a solution
ofyxa=>b.

To show uniqueness of y, we use the standard method of assuming that we have
two solutions, y; and y,, so thaty; xa = band y, * a = b. Then y, * a = y, * q, and by
Theorem 2.16, y; = y;. The uniqueness of x follows similarly. *

Of course, to prove the uniqueness in the last theorem, we could have followed the
procedure we used in motivating the definition of a group, showing that if a x = b,
then x = a’ * b. However, we chose to illustrate the standard way to prove an object is
unique; namely, suppose you have two such objects, and then prove they must be the
same. Note that the solutions x = @’ * b and y = b * a’ need not be the same unless * is
commutative.

Because a group has a binary operation, we know from Theorem 1.15 that the
identity e in a group is unique. We state this again as part of the next theorem for easy
reference.

In a group G with binary operation *, there is only one element e in G such that
exx=xxe=x
for all x € G. Likewise for each a € G, there is only one element @’ in G such that
dxa=axd =e.
In summary, the identity element and inverse of each element are unique in a group.

Theorem 1.15 shows that an identity element for any binary operation is unique. No use
of the other group axioms was required to show this.

Turning to the uniqueness of an inverse, suppose that a € G has inverses @’ and a”
sothata’ xa=axa = eanda” *a =a*a” = e. Then

axd' =axd =e

and, by Theorem 2.16,

so the inverse of a in a group is unique. *
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Note that in a group G, we have
(@axb)x (W' xad)=ax(bxb)xd =(@*e)xd =axad =e.

This equation and Theorem 2.18 show that &' x @’ is the unique inverse of a % b.
That is, (a * b) = b’ * a’. We state this as a corollary.

Let G be a group. For all a,b € G, we have (a xb) = b’ xa'. *

For your information, we remark that binary algebraic structures with weaker ax-
ioms than those for a group have also been studied quite extensively. Of these weaker
structures, the semigroup, a set with an associative binary operation, has perhaps had
the most attention. A moneid is a semigroup that has an identity element for the binary
operation. Note that every group is both a semigroup and a monoid.

Finally, it is possible to give axioms for a group (G, *) that seem at first glance to
be weaker, namely:

1. The binary operation * on G is associative.
2. There exists a left identity element e in G such that e x x = x forall x € G.
3. Foreacha € G, there exists a left inverse a’ in G such that ' x a = e.

From this one-sided definition, one can prove that the left identity element is also a
right identity element, and a left inverse is also a right inverse for the same element.
Thus these axioms should not be called weaker, since they result in exactly the same
structures being called groups. It is conceivable that it might be easier in some cases to
check these left axioms than to check our two-sided axioms. Of course, by symmetry it
is clear that there are also right axioms for a group.

Group Isomorphisms

All our examples have been of infinite groups, that is, groups where the set G has an in-
finite number of elements. We turn to finite groups, starting with the smallest finite sets.

Since a group has to have at least one element, namely, the identity, a minimal
set that might give rise to a group is a one-element set {e}. The only possible binary
operation * on {e} is defined by e % ¢ = e. The three group axioms hold. The identity
element is always its own inverse in every group.

There is a group with only two elements, namely G = {1, —1} with operation the
usual multiplication. It is clear that G is closed under multiplication and we know that
multiplication is associative. Furthermore, 1 is the identity, the inverse of 1 is 1, and the
inverse of —1 is —1. Table 2.20 is the group table for G.

Is this the only group with exactly two elements? To see, let us try to put a group
structure on a set with two elements. Since one of the elements must be the identity, we
will label the identity element e and we will label the other element a. Following tradi-
tion, we place the identity first both on the top and to the left as in the following table.

* e | a

e

a
Since e is to be the identity,

exxX=X*%e=Xx
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for all x € {e, a}. We are forced to fill in the table as follows, if * is to give a group:

* e | a
e e | a
a a

Also, a must have an inverse a’ such that
/ ’
axd =dxa=e.

In our case, a’ must be either e or a. Since @’ = e obviously does not work, we must
have @’ = a, so we have to complete the table as shown in Table 2.21.

All the group axioms are now satisfied, except possibly associativity. But if we
relabel 1 as e and —1 as a in Table 2.20 we obtain Table 2.21. Therefore, the table
we constructed for {e,a} must also satisfy &, the associative property. The table also
shows clearly that properties % and &; are satisfied, so ({e, a}, *) is a group. The groups
{1, —1} and {e, a} are not the same, but they are essentially the same since by relabeling
elements of one with the names of the other, the operations match. When the elements
of one group can be matched with another in such a way that the operations are the
same, we say that the groups are isomorphic and the matching is called a group
isomorphism. We showed that any group with two elements is isomorphic with {1, —1}
under multiplication. The notation used to indicate isomorphism is ~~, so we could write
({1, -1}, x) =~ {{e,a}, *). Of course the matching is a one-to-one function from one
group onto the other. If we were only interested in groups whose tables are easy to
compute, then we would not need a more precise definition for isomorphism. We would
simply see if we can relabel one group table to make it look like the other. However,
in the case of infinite groups or even groups with more than a few elements, we need a
better way to verify that groups are isomorphic. We now give a more precise definition
of a group isomorphism.

Let (G1,*;) and (G,,*;) be groups and f: G; — G,. We say that f is a group
isomorphism if the following two conditions are satisfied.

1. The function f is one-to-one and maps onto G,.
2. Forall a,b € Gy, f(a %1 b) = f(a) %2 f(b). m

Note that Condition 1 simply gives a way to relabel the elements of G; with elements in
G,. Condition 2, which we will refer to as the homomorphism property, says that with
this relabeling, the operations *; on G; and %, on G, match. If we are in the context of
groups, we will often use the term isomorphism to mean group isomorphism. If there
is an isomorphism from a group G, to G,, we say that G, is isomorphic with (or to)
G,. In Exercise 44, you are asked to show that if f : G; — G; is an isomorphism, then
f~!: G, — Gy, the inverse function, is also an isomorphism. So if G, is isomorphic
with G,, then G, is isomorphic with G;. If you wish to verify that two groups, G, and
G, are isomorphic, you can either construct an isomorphism mapping G, to G, or one
mapping G, to Gy.

In Exercise 10 you will be asked to show that 2Z, the even integers, forms a group under
addition. Here we show Z and 2Z are isomorphic groups. In this case, the operations
on the groups are both addition. We need a function f : Z — 27 that is both one-to-one
and onto 2Z. Let f : Z — 2Z be given by f(m) = 2m. We need to verify Condition 1 for
an isomorphism, which says that f is one-to-one and onto. Suppose that a,b € Z and
f(a) = f(b). Then 2a = 2b, which implies that a = b, so f is one-to-one. We now show f
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isonto. Lety € 2Z. Since y is even, y = 2c¢ for some ¢ € Z. Therefore, y = 2¢ = f(c), so
f maps onto 2Z. We now turn our attention to the homomorphism property and consider
arbitrary a, b € Z. Then

fla+b)=2a+b)=2a+2b=f(a)+fb),

which verifies Condition 2. Therefore f is a group isomorphism and Z and 2Z are iso-
morphic groups.

As noted above, we could have defined an isomorphism by using the inverse
function f~! : 27 — Z, which is defined by f~(x) = x/2. A

Properties of Group Tables

With Table 2.21 as background, we should be able to list some necessary conditions that
a table giving a binary operation on a finite set must satisfy for the operation to give a
group structure on the set. There must be one element of the set, which we may as well
denote by e, that acts as the identity element. The condition e * x = x means that the row
of the table opposite e at the extreme left must contain exactly the elements appearing
across the very top of the table in the same order. Similarly, the condition x ¥ e = x
means that the column of the table under e at the very top must contain exactly the
elements appearing at the extreme left in the same order. The fact that every element a
has a right and a left inverse means that in the row having a at the extreme left, the
element e must appear, and in the column under a at the very top, the e must appear.
Thus e must appear in each row and in each column. We can do even better than this,
however. By Theorem 2.17, not only do the equations a *x = ¢ and y % a = e have
unique solutions, but also the equations a x x = b and y x @ = b. By a similar argument,
this means that each element b of the group must appear once and only once in each
row and each column of the table.

Suppose conversely that a table for a binary operation on a finite set is such that
there is an element acting as identity and that in each row and each column, each element
of the set appears exactly once. Then it can be seen that the structure is a group structure
if and only if the associative law holds. If a binary operation * is given by a table,
the associative law is usually messy to check. If the operation * is defined by some
characterizing property of a * b, the associative law is often easy to check. Fortunately,
this second case turns out to be the one usually encountered.

We saw that there was essentially only one group of two elements in the sense that if
the elements are denoted by e and a with the identity element e appearing first, the table
must be as shown in Table 2.21. Suppose that a set has three elements. As before, we
may as well let the set be {e, a, b}. For e to be an identity element, a binary operation * on
this set has to have a table of the form shown in Table 2.24. This leaves four places to be
filled in. You can quickly see that Table 2.24 must be completed as shown in Table 2.25
if each row and each column are to contain each element exactly once. We find a group
whose table is the same as Table 2.25. The elements of the group are the three matrices

10 _1_¥3 _1 3
e=[01],a= ﬁz _i ,and b = é 21 . We let G = {e, a, b}. In Exercise
2 T2

18 you will show that G is a group under matrix multiplication. By computing matix
products it is easy to check that the group table for G is identical with Table 2.25.
Therefore Table 2.25 gives a group.

Now suppose that G’ is any other group of three elements and imagine a table for G’
with identity element appearing first. Since our filling out of the table for G = {e, a, b}
could be done in only one way, we see that if we take the table for G’ and rename the
identity e, the next element listed a, and the last element b, the resulting table for G’
must be the same as the one we had for G. As explained above, this renaming gives an
isomorphism of the group G’ with the group G. Thus our work above can be summarized
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by saying that all groups with a single element are isomorphic, all groups with just two
elements are isomorphic, and all groups with just three elements are isomorphic. We use
the phrase up to isomorphism to express this identification. Thus we may say, “There is
only one group of three elements, up to isomorphism.”

An interesting problem in group theory is to determine up to isomorphism all the
groups with a given number of elements n. In Exercise 20, you will be asked to show
that there are up to isomorphism exactly two groups of order 4. It is beyond the scope of
this book to give a thorough investigation of this problem, but we will solve the problem
for some other special values of » in later sections.

m EXERCISES 2

Computations

In Exercises 1 through 9, determine whether the binary operation * gives a group structure on the given set. If no
group results, give the first axiom in the order %, %, % from Definition 2.1 that does not hold.

1. Let % be defined on Z by letting a * b = ab.

2. Let x be defined on 2Z = {2n|n € Z} by lettinga * b =a + b.

3. Let * be defined on R* by letting a * b = v/ab.

4. Let x be defined on Q by letting a * b = ab.

5. Let x be defined on the set R* of nonzero real numbers by letting a % b = a/b.
6. Let x be defined on C by letting a * b = |ab|.

7. Let x be defined on the set {a, b} by Table 2.26.

8. Let x be defined on the set {a, b} by Table 2.27.

9. Let x be defined on the set {e, a, b} by Table 2.28.

2.28 Table
2.26 Table 2.27 Table
* e a b
* |al| b * a b
e e a b
alal|b a a b
a e b
b|b|b b|al|b
b |b|b| e

10. Let n be a positive integer and let nZ = {nm |m € Z}.
a. Show that (nZ, +) is a group.
b. Show that (nZ, +) ~ (Z,+).

In Exercises 11 through 18, determine whether the given set of matrices under the specified operation, matrix
addition or multiplication, is a group. Recall that a diagonal matrix is a square matrix whose only nonzero entries
lie on the main diagonal, from the upper left to the lower right corner. An upper-triangular matrix is a square
matrix with only zero entries below the main diagonal. Associated with each n x n matrix A is a number called
the determinant of A, denoted by det(A). If A and B are both n x n matrices, then det(AB) = det(A) det(B). Also,
det(l,) = 1 and A is invertible if and only if det(A) # 0.

11. All n x n diagonal matrices under matrix addition.

12. All n x n diagonal matrices under matrix multiplication.

13. All n x n diagonal matrices with no zero diagonal entry under matrix multiplication.

14. All n x n diagonal matrices with all diagonal entries 1 or —1 under matrix multiplication.
15. All n x n upper-triangular matrices under matrix multiplication.

16. All n x n upper-triangular matrices under matrix addition.

17. All n x n upper-triangular matrices with determinant 1 under matrix multiplication.
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matrix multiplication.
Let S be the set of all real numbers except —1. Define * on S by

axb=a+b+ab.

a. Show that * gives a binary operation on S.
b. Show that (S, %) is a group.
¢. Find the solution of the equation 2 x* 3 = 7in S.

This exercise shows that there are two nonisomorphic group structures on a set of 4 elements.

Let the set be {e, a, b, c}, with e the identity element for the group operation. A group table would then have
to start in the manner shown in Table 2.29. The square indicated by the question mark cannot be filled in with
a. It must be filled in either with the identity element e or with an element different from both e and a. In this
latter case, it is no loss of generality to assume that this element is b. If this square is filled in with e, the table
can then be completed in two ways to give a group. Find these two tables. (You need not check the associative
law.) If this square is filled in with b, then the table can only be completed in one way to give a group. Find this
table. (Again, you need not check the associative law.) Of the three tables you now have, two give isomorphic
groups. Determine which two tables these are, and give the one-to-one onto relabeling function which is an
isomorphism.

a. Are all groups of 4 elements commutative?
b. Find a way to relabel the four matrices

(BN A ERIC T

so the matrix multiplication table is identical to one you constructed. This shows that the table you con-
structed defines an associative operation and therefore gives a group.

¢. Show that for a particular value of n, the group elements given in Exercise 14 can be relabeled so their
group table is identical to one you constructed. This implies the operation in the table is also associative.

According to Exercise 12 of Section 1, there are 16 possible binary operations on a set of 2 elements. How
many of these give a structure of a group? How many of the 19,683 possible binary operations on a set of
3 elements give a group structure?

Concepts

22. Consider our axioms %, %, and & for a group. We gave them in the order & % %. Conceivable other

orders to state the axioms are H A3 %, $A G, 583G, BG 5, and B 5 G . Of these six possible
orders, exactly three are acceptable for a definition. Which orders are not acceptable, and why? (Remember
this. Most instructors ask the student to define a group on at least one test.)

2.29 Table

x|e|la|b]|c

elelal|b|c

alal|?
b|b
c|ec

23. The following “definitions” of a group are taken verbatim, including spelling and punctuation, from papers of

students who wrote a bit too quickly and carelessly. Criticize them.

a. A group G is a set of elements together with a binary operation * such that the following conditions are
satisfied
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* is associative
There exists e € G such that

e *x = x * e = x = identity.

For every a € G there exists an @’ (inverse) such that

b. A group is a set G such that
The operation on G is associative.
there is an identity element (e) in G.
for every a € G, there is an @’ (inverse for each element)
¢. A group is a set with a binary operation such
the binary operation is defined
an inverse exists
an identity element exists
d. A set G is called a group over the binery operation * such that for alla,b € G
Binary operation * is associative under addition
there exist an element {e} such that

ake=exa=e
Fore every element a there exists an element @’ such that

axd =dxa=e

. Give a table defining an operation satisfying axioms % and %3 in the definition of a group, but not satisfying

axiom & for the set

a. {e,a,b}

b. {e,a,b,c}

Mark each of the following true or false.

a. A group may have more than one identity element.
— b. Any two groups of three elements are isomorphic.
¢. In a group, each linear equation has a solution.

d. The proper attitude toward a definition is to memorize it so that you can reproduce it word for
word as in the text.

e. Any definition a person gives for a group is correct provided that everything that is a group by that
person’s definition is also a group by the definition in the text.

f. Any definition a person gives for a group is correct provided he or she can show that everything
that satisfies the definition satisfies the one in the text and conversely.

g. Every finite group of at most three elements is abelian.

h. An equation of the form a * x * b = ¢ always has a unique solution in a group.
i. The empty set can be considered a group.

j- Every group is a binary algebraic structure.

Proof synopsis

‘We give an example of a proof synopsis. Here is a one-sentence synopsis of the proof that the inverse of an element
a in a group (G, *) is unique.

Assuming that a x @’ = e and a * d”’ = e, apply the left cancellation law to the equation a * @’ = a * a”.

Note that we said “the left cancellation law” and not “Theorem 2.16.” We always suppose that our synopsis was
given as an explanation given during a conversation at lunch, with no reference to text numbering and as little
notation as is practical.
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Give a one-sentence synopsis of the proof of the left cancellation law in Theorem 2.16.

Give at most a two-sentence synopsis of the proof in Theorem 2.17 that an equation ax = b has a unique
solution in a group.

Theory

28.

29.

30.

31

32.

33.

3s.

42,
43.

4.

45.

An element a # e in a group is said to have order 2 if a * a = e. Prove that if G is a group and a € G has order
2, then for any b € G, b’ * a * b also has order 2.

Show that if G is a finite group with identity e and with an even number of elements, then there is a # e in G
such thataxa =e.

Let R* be the set of all real numbers except 0. Define * on R* by letting a * b = |a|b.

a. Show that * gives an associative binary operation on R*.

b. Show that there is a left identity for * and a right inverse for each element in R*.

¢. Is R* with this binary operation a group?

d. Explain the significance of this exercise.

If * is a binary operation on a set S, an element x of S is an idempotent for * if x * x = x. Prove that a group
has exactly one idempotent element. (You may use any theorems proved so far in the text.)

Show that every group G with identity e and such that x x x = e for all x € G is abelian. [Hint: Consider
(a*xb)*(axb).]

Let G be an abelian group and let ¢” = ¢ * ¢ * - - - * ¢ for n factors ¢, where ¢ € G and n € Z*. Give a mathe-
matical induction proof that (a * b)" = (a") * (b") for alla,b € G.

Suppose that G is a group and a, b € G satisfy a x b = b * a’ where as usual, d’ is the inverse for a. Prove that
bxa=a *b.

Suppose that G is a group and a and b are elements of G that satisfy a * b = b % a>. Rewrite the element
(a * b)? in the form b*a". (See Exercise 33 for power notation.)

Let G be a group with a finite number of elements. Show that for any a € G, there exists an n € Z* such that
a" = e. See Exercise 33 for the meaning of a”. [Hint: Consider e,a,a?,a’, . ..,a™, where m is the number of
elements in G, and use the cancellation laws.]

Show that if (a * b)> = a® % b for @ and b in a group G, then a * b = b * a. See Exercise 33 for the meaning
of a%.

Let G be a group and let a,b € G. Show that (a * b) =a' x b’ ifandonly ifa*xb = b * a.
Let G be a group and suppose that a x b % ¢ = e for a, b, ¢ € G. Show that b x ¢ x a = e also.

Prove that a set G, together with a binary operation * on G satisfying the left axioms 1, 2, and 3 given after
Corollary 2.19, is a group.

Prove that a nonempty set G, together with an associative binary operation * on G such that
axx=bandy*a = b have solutions in G for all a, b € G,

is a group. [Hint: Use Exercise 40.]
Let G be a group. Prove that (a’) = a.
Let ¢ : R>? > R? be an isometry of the plane.

a. Prove that ¢ is a one-to-one function.
b. Prove that ¢ maps onto R2.

Prove that if f: G — G; is a group isomorphism from the group (Gj,*;) to the group (G, *>), then
f~!: Gy > Gj is also a group isomorphism.

Suppose that G is a group with n elements and A C G has more than 7 elements. Prove that for every g € G,
there exists a, b € A such that a x b = g. (This was Problem B-2 on the 1968 Putnam exam.)
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SECTION 3

3.1 Example

3.2 Example

Groups and Subgroups

ABELIAN EXAMPLES

In this section we introduce two families of abelian groups and one special abelian
group. These groups will be very useful in our study of groups in that they provide
examples we can use to help understand concepts and test conjectures. Furthermore, we
will see that some of them arise frequently in the study of groups.

We start by defining the set Z, = {0,1,2,3,...,n — 1}, the first n — 1 positive in-
tegers together with 0, which makes a total of n elements. To define an operation +, on
Zn, weleta,b € Z,. Then

a+b ifa+b<n

atnb= {a+b—n ifa+b>n"

Note that for any a,b € Z,,0 <a+b <2n—2,500 <a+, b <n—1is an op-
eration which we call addition modulo n. Addition modulo 7 is clearly commutative:
a+,b=>b+,aforanya,b € Z,. The number 0 is an identity, the inverse of a € Z, is
n — a for a # 0, and the inverse of 0 is 0. To show that (Z,, +,) is an abelian group, it
only remains to show that +, is associative. Although it is not difficult to show directly
that +, is associative, it is a little tedious, so we defer the proof until we develop the
circle group and then use properties of that group to conclude that (Z,, +,) is an abelian
group.

For n = 1, Z; = {0}, which is the trivial group with just one element. For n = 2, Z, =
{0, 1}, which as we saw in Section 2 is isomorphic with {1, —1} under multiplication.
It is important to note that completely different operations on sets can still define iso-
morphic groups. We also saw in Section 2 that any group with exactly three elements
is isomorphic with any other group with exactly three elements. Therefore Z3 under
addition modulo 3 is isomorphic with the group consisting of the three matrices

[T

under matrix multiplication. Again we see that two groups can be isomorphic, but have
completely different sets and operations. A

HN

Let us look more closely at the group table for Z4, Table 3.3. We sce that the
inverse for O is 0, the inverse for 1 is 4 — 1 = 3, and the inverse for 2 is 4 — 2 = 2.
In Exercise 20 in Section 2, you were asked to show that there are two groups with
exactly four elements. The other group is the Klein 4-group denoted V, which stands
for Vier, German for “four.” The group table for V is displayed as Table 3.4. How can
we tell that the two groups Z4 and V are not isomorphic? We could try all possible one-
to-one functions from Z4 onto K4 to see if any of them make the table for Z4 look like
the table for K4. This is tedious, so instead we look for a sneaky method. Notice that
the diagonal entries of the table for K4 are all the identity. No matter how we relabel

3.3 Table 3.4 Table

Z4: v:

w N ~olf
(Sl S i ] K
S W N = =
—_O W NN
N = O Ww
o o8 o
o o8 afa
S o o s
2 a o oo
& 8 o ala
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the entries in the table for Z4, only two entries along the diagonal will be the same.
Therefore Z4 and K are not isomorphic. A

Looking back at the definition of +, there is no reason we had to restrict our set
to integers a with 0 < a < n. In fact, the same formula defines an operation on all real
numbers a with 0 < a < n. In general, let ¢ be any positive real number and a, b € [0, ¢).
We define +,. by

a+b ifa+b<c

ateb= {a+b—c ifa+b>c’

This operation is called addition modulo c. It is easy to see that addition modulo ¢
is an operation on [0, ¢), it is commutative, O is an identity, the inverse of 0 is 0, and
the inverse of any a € (0,¢) is ¢ — a. Instead of writing [0, ¢) we will denote this set
as R.. In order to show that (R, +.) is an abelian group, it remains to show that + is
associative. Again, we defer the proof until after we develop the circle group.

Let ¢ = 2. Then %n +on gn = %n and %n +on gn = %n. The inverse of 7 is 2 —
. A

[STE]
[N

In the group (Ry,,+2-), We are essentially equating O with 27 in the sense that
if a and b add to give 27, we know that a +,, b = 0. Intuitively, we can think of this
geometrically as taking a string of length 27 and attaching the ends together to form a
circle of radius 1. Our next goal is to make this idea more precise by defining a group
on the unit circle in the plane and showing that this group is isomorphic with R,,. To
do this, we first review some facts about complex numbers.

yi
4i -
3i-
Zﬁu a+ bi
o -t
T |
1 ! ] | ] ! GH x
-4 -3 -2 -1 0 1 2 3 4
—ik
_21 -
3.6 Figure

Complex Numbers

A real number can be visualized geometrically as a point on a line that we often regard
as an x-axis. A complex number can be regarded as a point in the Euclidean plane, as
shown in Fig. 3.6. Note that we label the vertical axis as the yi-axis rather than just the
y-axis, and label the point one unit above the origin with i rather than 1. The point with
Cartesian coordinates (a, b) is labeled a + bi in Fig. 3.6. The set C of complex numbers

is defined by
C={a+bila,beR}.

We consider R to be a subset of the complex numbers by identifying a real number r
with the complex number r + 0i. For example, we write 3 + Oi as 3 and —m + Qi as —m
and 0 + 0i as 0. Similarly, we write O 4 1i as i and 0 + si as si.
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Complex numbers were developed after the development of real numbers. The
complex number i was invented to provide a solution to the quadratic equation x> = —1,

ire that
so we require thal PR @

Unfortunately, i has been called an imaginary number, and this terminology has led
generations of students to view the complex numbers with more skepticism than the
real numbers. Actually, all numbers, such as 1, 3, 7, —+/3, and i are inventions of our
minds. There is no physical entity that is the number 1. If there were, it would surely
be in a place of honor in some great scientific museum, and past it would file a steady
stream of mathematicians, gazing at 1 in wonder and awe. A basic goal of this text is to
show how we can invent solutions of polynomial equations when the coefficients of the
polynomial may not even be real numbers!

Multiplication of Complex Numbers

The product (a + bi)(c + di) is defined in the way it must be if we are to enjoy the
familiar properties of real arithmetic and require that i = —1, in accord with Eq. (1).
Namely, we see that we want to have

(a + bi)(c + di) = ac + adi + bci + bdi®
= ac + adi + bci + bd(—1)
= (ac — bd) + (ad + bc)i.
Consequently, we define multiplication of z; = a + bi and z, = ¢ + di as
2122 = (a + bi)(c + di) = (ac — bd) + (ad + bc)i, 2)

which is of the form r + si with r = ac — bd and s = ad + bc. 1t is routine to check
that the usual properties z1z2 = z2zi(commutative), z1(z223) = (z122)z3 (associative),
and z1(z2 + z3) = 7122 + 2123 (distributive) all hold for all z;, 22,23 € C.

Compute (2 — 5i)(8 + 3i).
We don’t memorize Eq. (2), but rather we compute the product as we did to motivate
that equation. We have

(2 — 5i)(8 + 3i) = 16 + 6i — 40i + 15 = 31 — 34i. A

To establish the geometric meaning of complex multiplication, we first define the abso-
lute value |a + bi| of a + bi by

la + bi| = Va2 + b2 3)

This absolute value is a nonnegative real number and is the distance from a + bi to the
origin in Fig. 3.6. We can now describe a complex number z in the polar-coordinate form

z = |z|(cos @ + isin0), 1))

where 6 is the angle measured counterclockwise from the positive x-axis to the vector
from O to z, as shown in Fig. 3.8. A famous formula due to Leonard Euler states that

e® = cos@ + isiné.
Euler’s Formula



3.11 Example

Solution

Section 3  Abelian Examples 35
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We ask you to derive Euler’s formula formally from the power series expansions for
e%,cos 6, and sin @ in Exercise 43. Using this formula, we can express z in Eq. (4) as
z=|z]e?. Let us set

01 = |22|ei92

21 = |z1]é and

and compute their product in this form, assuming that the usual laws of exponentiation
hold with complex number exponents. We obtain

a2 = lale®z21e® = |zlzle

= |z1ll2|[cos(61 + 65) + isin(6; + 6,)]. ®)

i(61+62)

Note that Eq. 5 concludes in the polar form of Eq. 4 where |z122| = |z1]|z2| and the
polar angle 6 for z;z; is the sum 6 = 6, + 6,. Thus, geometrically, we multiply com-
plex numbers by multiplying their absolute values and adding their polar angles, as
shown in Fig. 3.9. Exercise 41 indicates how this can be derived via trigonomet-
ric identities without recourse to Euler’s formula and assumptions about complex
exponentiation.

yi
yi

i

2
217 i

1 x 1 x
-2 -1 0 1 2 o] 1

3.9 Figure 3.10 Figure

Note that i has polar angle 77 /2 and absolute value 1, as shown in Fig. 3.10. Thus 2
has polar angle 2(/2) = 7 and |1 - 1| = 1, so that > = —1.

Find all solutions in C of the equation 7 = i.
Writing the equation z? = i in polar form and using Eq. (5), we obtain

|z|2(cos 26 + isin20) = 1(0 + i).

Thus |z|2 = 1, so |z| = 1. The angle @ for z must satisfy cos 20 = 0 and sin26 = 1.
Consequently, 26 = (7 /2) + n(2w), so 0 = (;r/4) + nx for an integer n. The values of



36

PartI Groups and Subgroups

n yielding values 6 where 0 < 6 < 27 are 0 and 1, yielding 6 = 7 /4 or 6 = 5n /4. Our
solutions are

=1 Jz+'in” d =1 5n+ 1n5n
1= cos4 is 7 an = cos4 is 2

or

1 -1
1= E(l +1i) and = E(l + ). A

3.12 Example Find all solutions of z* = —16.

Solution  As in Example 3.11 we write the equation in polar form, obtaining
l2I*(cos 40 + isin40) = 16(—1 + 0i).

Consequently, [z|* = 16, so |z| = 2 while cos 49 = —1 and sin49 = 0. We find that
46 = + n(2m), so 6 = (w/4) + n(w/2) for integers n. The different values of 6
obtained where 0 <6 < 2m are 7 /4,37 /4,57 /4, and 7m/4. Thus one solution of
4 X
7 =-161s

2(cos%+isin%) =2(7+71) V21 +0).

In a similar way, we find three more solutions,
V21410, V2A=1-i), and ~2(1-i). A

The last two examples illustrate that we can find solutions of an equation 7" =
a + bi by writing the equation in polar form. There will always be r solutions, provided
that a + bi # 0. Exercises 16 through 21 ask you to solve equations of this type.

We will not use addition or division of complex numbers, but we probably should
mention that addition is given by

(@a+b)+(c+d)y=(@+c)+(b+ad)i. (6)

and division of a + bi by nonzero c + di can be performed using only division of real
numbers as follows:

a+bi _a+bi c—di (ac+bd)+ (bc — ad)i

c+di c+di c—di +d
ac+bd bc—ad
= i. 7
cz+d2+cz+a“zl @

yi

3.13 Figure
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Algebra on the Unit Circle

Let U = {z € C | |z] = 1}, so that U is the circle in the Euclidean plane with center at
the origin and radius 1, as shown in Fig. 3.13.

(U, -) is an abelian group.

We first check that U is closed under multiplication. Let zy,z, € U. Then 21| = |z2| = 1,
which implies that |z,z;| = 1, showing z;z, € U.

Since multiplication of complex numbers is associative and commutative in gen-
eral, multiplication in U is also associative and commutative, which verifies & and the
condition for abelian.

The number 1 € U is the identity, verifying condition .

Foreacha + bi € U,

(@a+bia—b)=a*— By’ =a*+ b =la+bi*=1.

So the inverse of a + bi is a — bi, which verifies condition %3. Thus U is an abelian
group under multiplication. L 4

Figure 3.13 gives us a way of relabeling points in U as points in R,,. We simply
relabel z as 6 where 0 <6 < 2n. Let f : U — Ry, be given by f(z) = 6 according
to this relabeling. Then for z;,z; € U, f(z122) = f(z1) +2x f(z2) since multiplying in U
simply adds the corresponding angles:

if 7160, and 2 < 6, then z;-2 < (6 421 62). ®)

Recall that all that remains to show that R, is a group is to show that +,, is associative.
Since the operations of multiplication in U and addition modulo 27 in R,, are the same
using the above relabeling and multiplication in U is associative, addition modulo 2 is
also associative. This completes the proof that (Ryy, +2-) is a group. Furthermore, the
relabeling (8) shows that the two groups (U, -) and (Raz, +2-) are isomorphic. In Exer-
cise 45, you will be asked to prove that for any » > 0 and ¢ > 0, (R, +5) is an abelian
group and (Rp, +5) =~ (R., +). Since (Ryy,+25) is isomorphic with (U, -), for every
c >0, (R, +.) is also isomorphic with (U, -), meaning they have the same algebraic
properties.

The equation z-z-z-z =1 in U has exactly four solutions, namely, 1, i, —1, and —i.
Now 1 € U and 0 € R;, correspond, and the equation x +2; X +27 X +2, x = 0in Ry,

has exactly four solutions, namely, 0, /2, 7, and 37 /2, which, of course, correspond
to 1, i, —1, and —i, respectively. A

Roots of Unity

The elements of the set U, = {z € C|z" = 1} are called the n'™ roots of unity. In
Exercise 46 you are asked to prove that U, is a group under multiplication. Using the
techniques from Examples 3.11 and 3.12, we see that the elements of this set are the

numbers ) 2. 2.
(") = cos (m—{[-) + isin (m—n) form=0,1,2,...,n—1.
n n

They all have absolute value 1, so U, C U. If we let { = cos 27" + isin 27", then these
n® roots of unity can be written as

1=¢0%¢4¢%0% el Q)
Because ¢" = 1, these n powers of ¢ are closed under multiplication. For example, with
n = 10, we have {6;8={l4={10;4=1.;4={4'
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Thus we see that we can compute ¢°¢/ by computing i +,j, viewing i and j as elements
of Z,.

By relabeling an element {™ € U, to m € Z, we can see that addition modulo n in
Z, is also associative, which completes the proof that (Z,, +,) is an abelian group.

3.16 Example We solve the equation x +3x +gx = 1 in Zg using trial and error. We note that nei-
ther 0, 1, nor 2 is a solution simply by substitution. However, substituting x = 3 gives
3+33+53 =6+33 =1, which shows x =3 is a solution. We can also check by
substituting that neither 4, 5, 6, nor 7 are solutions. So the only solution is x = 3.
Because Zg is isomorphic with Ug by the correspondence k € Zg corresponds with
¢*, the corresponding equation in Ug is z-z-z2=¢ = €%, Without further calcula-
tions we know that there is only one solution to z-z-z = ¢ in Ug and that solution

s 2 2
isz=¢3= ST = cos(67r/8) + isin(67r/8) = —% + %i since this is the corre-
sponding solution in Zg.
There are three solutions to z3 = ¢ in U. We leave it to the reader to find the solu-

tions and check that only one of them, ¢3, is in Us. A
‘We summarize the results of this section.

1. Forany n € Z*, Z, is an abelian group under addition modulo 7.

2. Foranyn € Z*, Z, is isomorphic with Uy, an abelian group under complex
number multiplication.

3. Forany ¢ > 0, R under addition modulo c is a group.
4. U under multiplication is a group.

5. Forany ¢ € R, R, under addition modulo c is isomorphic with U under
multiplication.

m EXERCISES 3

In Exercises 1 through 9 compute the given arithmetic expression and give the answer in the form a + bi for
a,beR.

L8 2. i* 3. 6

4. (=¥ 5. 3-2i)6+1) 6. 8+20)3—1i)

7. 2 - 34 + i) + (6 — 5i) 8. (1+i) 9. (1 — i)’ (Use the binomial theorem.)
10. Find |5 — 12il. 11. Find |7 + eil.

In Exercises 12 through 15 write the given complex number z in the polar form |z|(p + gi) where |p + gi| = 1.

12. 3 - 4i 13. —1—i 14. 12+ 5i 15. -3 +5i
In Exercises 16 through 21, find all solutions in C of the given equation.

16. # =1 17. 24 = -1 18. 22 = -125 19. 22 = -27i
20, f=1 21. 8 = —64

In Exercises 22 through 27, compute the given expression using the indicated modular addition.

22. 10 +17 16 23. 14 49992 24. 3.141 +42.718

25. 1 +1 % 26. 3 4, 32 27. 2V2 + ;5532

28. Explain why the expression 5 +¢ 8 in R¢ makes no sense.
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In Exercises 29 through 34, find all solutions x of the given equation.

29, x+197 =3inZyg 30. x+2z m =S inRoy
3. x+7x=3inZy 32, x+13x+13x=5inZ3
33 x+12x=2inZyp 34, x+gx+gx+gx=4inZg

35. Prove or give a counterexample to the statement that for any n € Z* and a € Z,, the equation x +, x = a has
at most two solutions in Zj,.

36. Prove or give a counterexample to the statement that for any n € Z* and a € Zj, if n is not a multiple of 3,
then the equation x +, x +, x = a has exactly one solution in Zj,.

37. There is an isomorphism of Ug with Zg in which ¢ = ¢/™/* « 5 and ¢2 < 2. Find the element of Zg that
corresponds to each of the remaining six elements ¢™ in Ug form = 0,3,4,5,6, and 7.

38. There is an isomorphism of U7 with Z7 in which ¢ = ¢/®*/7) < 4. Find the element in Z7 to which ¢™ must
correspond form = 0,2,3,4,5, and 6.

39. Why can there be no isomorphism of Ug with Zg in which ¢ = ¢/*/3 corresponds to 4?
40. Derive the formulas
sin(a + b) = sinacos b + cosasinb
and
cos(a + b) = cosacos b — sinasinb
by using Euler’s formula and computing ¢@e™.
41. Let z; = |z1]|(cos0; + isin6)) and z, = |z2](cos O + isin 6>). Use the trigonometric identities in Exercise 40
to derive z1z2 = z1]|z2|[cos(8) + 62) + isin(@; + 62)].
42. a. Derive a formula for cos 36 in terms of sin 8 and cos 6 using Euler’s formula.
b. Derive the formula cos 39 = 4 cos® 6 — 3 cos § from part (a) and the identity sin? § + cos2 0 = 1. (We will
have use for this identity in Section 41.)

43. Recall the power series expansions

F ol 2 2 2 X"
= +x+2—!+§+4—!+"'+m+" .
. £ x 1 -1
e T T s
2 xS o
=] - — 4+ — = — ... —1)*
cosx 2!+4! 6!+ +( )(2n)!+

from calculus. Derive Euler’s formula ¢ = cos § + i sin@ formally from these three series expansions.
44. Prove that for any n € Z*, (Z,, +,) is associative without using the fact that U,, is associative.

45. Let b,c € R*. Find a one-to-one and onto function f : R, — R, that has the homomorphism property. Con-
clude that R, is an abelian group that is isomorphic with U.

46. Prove that for any n > 1, Uy is a group.

SECTION4 NONABELIAN EXAMPLES

Notation and Terminology

It is time to explain some conventional notation and terminology used in group theory.
Algebraists as a rule do not use a special symbol * to denote a binary operation different
from the usual addition and multiplication. They stick with the conventional additive or
multiplicative notation and even call the operation addition or multiplication, depending
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4.1 Table
1 b
1 1 b
a a 1
b a
4.2 Table
+ |0 b
0 0 b
a a 0
a

Groups and Subgroups

on the symbol used. The symbol for addition is, of course, +, and usually multiplication
is denoted by juxtaposition without a dot, if no confusion results. Thus in place of the
notation a * b, we shall be using either a + b to be read “the sum of a and b,” or ab
to be read “the product of a and b.” There is a sort of unwritten agreement that the
symbol + should be used only to designate commutative operations. Algebraists feel
very uncomfortable when they see a + b # b + a. For this reason, when developing
our theory in a general situation where the operation may or may not be commutative,
we shall always use multiplicative notation.

Algebraists frequently use the symbol O to denote an additive identity element and
the symbol 1 to denote a multiplicative identity element, even though they may not be
actually denoting the integers 0 and 1. Of course, if they are also talking about numbers
at the same time, so that confusion would result, symbols such as e or u are used as
identity elements. Thus a table for a group of three elements might be one like Table 4.1
or, since such a group is commutative, the table might look like Table 4.2. In general
situations we shall continue to use e to denote the identity element of a group.

It is customary to denote the inverse of an element a in a group by a™! in mul-
tiplicative notation and by —a in additive notation. From now on, we shall use these
notations in place of the symbol a’.

Let n be a positive integer. If a is an element of a group G, written multiplicatively,
we denote the product aaa . . . a for n factors a by a”. We let a® be the identity element
e, and denote the product a'a~'a™!...a"! for n factors by a™. It is easy to see that
our usual law of exponents, a™a" = a™*" for m,n € Z, holds. For m,n € Z%, it is clear.
We illustrate another type of case by an example:

a~2d® = a~'a 'aaaaa = a~(a"'a)aaaa = a~'eaaaa = a~\(ea)aaa

=a 'aaaa = (a_la)aaa = eaaa = (ea)aa = aaa = a.

In additive notation, we denote a+a +a+ -- -+ a for n summands by na, denote
(—a) + (—a) + (—a) + - - - + (—a) for n summands by —na, and let Oa be the identity
element. Be careful: In the notation na, the number n is in Z, not in G. One reason
we prefer to present group theory using multiplicative notation, even if G is abelian,
is the confusion caused by regarding r as being in G in this notation na. No one ever
misinterprets the n when it appears in an exponent.

The following table summarizes basic notations and facts using both additive and
multiplicative notation. We assume that a is an element of a group, n,m are integers,
and k is a positive integer.

* Notation + Notation - Notation
May or may not be abelian Abelian May or may not be abelian
e 0 1
a —a a’ T
axb a+b ab
axax---*a ka a
k
adxd % xd —ka a*®
k
O0a=0 A =1
(n+m)a = na+ ma at" = g"a™
n(ma) = (nm)a @)™ =a™

Typically when stating a theorem we will use multiplicative notation, but the theo-
rem also applies when using additive notation by using the above table to translate.
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We often refer to the number of elements in a group, so we have a term for this
number.

If G is a group, then the order of G is the number of elements or cardinality of G. The
order of G is denoted |G]. [ ]

Permutations

‘We have seen examples of groups of numbers, like the groups Z, Q, and R under addi-
tion. We have also introduced groups of matrices, like the group GL(2, R). Each element
A of GL(2,R) yields a transformation of the plane R? into itself; namely, if we regard
X as a 2-component column vector, then Ax is also a 2-component column vector. The
group GL(2,R) is typical of many of the most useful groups in that its elements act
on things to transform them. Often, an action produced by a group element can be re-
garded as a function, and the binary operation of the group can be regarded as function
composition. In this section, we construct some finite groups whose elements, called
permutations, act on finite sets. These groups will provide us with examples of finite
nonabelian groups.

You may be familiar with the notion of a permutation of a set as a rearrangement of
the elements of the set. Thus for the set {1, 2, 3, 4, 5}, a rearrangement of the elements
could be given schematically as in Fig. 4.4, resulting in the new arrangement {4, 2, 5,
3, 1}. Let us think of this schematic diagram in Fig. 4.4 as a function mapping each
element listed in the left column into a single (not necessarily different) element from
the same set listed at the right. Thus 1 is carried into 4, 2 is mapped into 2, and so
on. Furthermore, to be a permutation of the set, this mapping must be such that each
element appears in the right column once and only once. For example, the diagram in
Fig. 4.5 does not give a permutation, for 3 appears twice while 1 does not appear at all
in the right column. We now define a permutation to be such a mapping.

1-4 1-3
22 22
35 34
43 45
5-1 5-3

4.4 Figure 4.5 Figure

A permutation of a set A is a function ¢ : A — A that is both one-to-one and onto.
]

Permutation Groups

‘We now show that function composition o is a binary operation on the collection of all
permutations of a set A. We call this operation permutation multiplication. Let A be a
set, and let o and T be permutations of A so that o and t are both one-to-one functions
mapping A onto A. The composite function o o T defined schematically by

ASASA,
gives a mapping of A into A. Rather than keep the symbol o for permutation multipli-
cation, we will denote o o T by the juxtaposition o t. Now ot will be a permutation

if it is one-to-one and onto A. Remember that the action of ot on A must be read in
right-to-left order: first apply t and then o. Let us show that o 7 is one-to-one. If

(ot)(@) = (o1)(@2),
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then
o(t(a1)) = o(z(a2)),
and since o is given to be one-to-one, we know that t(a;) = t(a;). But then, since ©
is one-to-one, this gives a; = a,. Hence o't is one-to-one. To show that o7 is onto A,
let a € A. Since o is onto A, there exists a’ € A such that o(a’) = a. Since 7 is onto A,
there exists a” € A such that 7(a”) = a’. Thus
a=o0(d)=o0(t(a") = (o7)a"),
S0 0T is onto A.
4.7 Example Suppose that

and that o is the permutation given by Fig. 4.4. We write o in a more standard notation,

A={1,2,3,4,5)

changing the columns to rows in parentheses and omitting the arrows, as

(1
7= \4

2 3 45
2 53 1)

so that o(1) = 4,0(2) = 2, and so on. Let

Then

(1
0T =1,

2 3 45
2 531

(123 45
=3 542 1)

1 2 3 45\ (1 23 435
3542 1)7\513 2 4)

For example, multiplying in right-to-left order,
(o)1) =0(z(1)) =0(3) =5.

m HISTORICAL NOTE

ne of the earliest recorded studies of per-

mutations occurs in the Sefer Yetsirah, or
Book of Creation, written by an unknown Jew-
ish author sometime before the eighth century.
The author was interested in counting the var-
ious ways in which the letters of the He-
brew alphabet can be arranged. The question
was in some sense a mystical one. It was
believed that the letters had magical powers;
therefore, suitable arrangements could subjugate
the forces of nature. The actual text of the
Sefer Yetsirah is very sparse: “Two letters build two
words, three build six words, four build 24 words,
five build 120, six build 720, seven build 5040.”
Interestingly enough, the idea of counting the ar-
rangements of the letters of the alphabet also oc-
curred in Islamic mathematics in the eighth and
ninth centuries. By the thirteenth century, in both
the Islamic and Hebrew cultures, the abstract idea

of a permutation had taken root so that both Abu-
1-’ Abbas ibn al-Banna (1256-1321), a mathemati-
cian from Marrakech in what is now Morocco, and
Levi ben Gerson, a French rabbi, philosopher, and
mathematician, were able to give rigorous proofs
that the number of permutations of any set of n el-
ements is n!, as well as prove various results about
counting combinations.

Levi and his predecessors, however, were con-
cerned with permutations as simply arrangements
of a given finite set. It was the search for solutions
of polynomial equations that led Lagrange and oth-
ers in the late eighteenth century to think of permu-
tations as functions from a finite set to itself, the set
being that of the roots of a given equation. And it
was Augustin-Louis Cauchy (1789-1857) who de-
veloped in detail the basic theorems of permutation
theory and who introduced the standard notation
used in this text.
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We now show that the collection of all permutations of a nonempty set A forms a
group under this permutation multiplication.

Let A be a nonempty set, and let S4 be the collection of all permutations of A. Then Sy
is a group under permutation multiplication.

We have shown that composition of two permutations of A yields a permutation of A,
50 84 is closed under permutation multiplication.

Now permutation multiplication is defined as function composition, and in
Section 1, we showed that function composition is associative. Hence & is satisfied.

The permutation ¢ such that «(a) = a, for all a € A acts as identity. Therefore % is
satisfied.

For a permutation o, the inverse function, o1, is the permutation that reverses the
direction of the mapping o, that is, o ~'(a) is the element @’ of A such that a = o'(a’).
The existence of exactly one such element @’ is a consequence of the fact that, as a
function, o is both one-to-one and onto. For each a € A we have

a)=a=o(d)=0(0""(a) = (00" )a)

and also
dy=d =07 ) =07 o(@)) = (67 'o)a),

so that 0~'o and o0 ~! are both the permutation ¢. Thus & is satisfied. .

Warning: Some texts compute a product o u of permutations in left-to-right order, so
that (o u)(a) = (o (a)). Thus the permutation they get for o i is the one we would get
by computing po. Exercise 34 asks us to check in two ways that we still get a group.
If you refer to another text on this material, be sure to check its order for permutation
multiplication.

There was nothing in our definition of a permutation to require that the set A be
finite. However, most of our examples of permutation groups will be concerned with
permutations of finite sets. Note that the structure of the group S, is concerned only
with the number of elements in the set A, and not what the elements in A are. If sets A
and B have the same cardinality, then S, ~ Sg. To define an isomorphism ¢ : S4 — Sg,
we let f:A — B be a one-to-one function mapping A onto B, which establishes that A
and B have the same cardinality. For o € S4, we let ¢(o') be the permutation 6 € Sg such
that & (f(a)) = f(o(a)) for all a € A. To illustrate this for A = {1,2,3} and B = {#, $, %}
and the function f : A — B defined as

fO=4# fQ=8% [fOG)=%,

1 2 3\. (# $ %
3211nt0%$#.

We simply rename the elements of A in our two-row notation by elements in B using
the renaming function f, thus renaming elements of S, to be those of Sg. We can take
{1,2,3,---, n} to be a prototype for a finite set A of n elements.

¢ maps

Let A be the finite set {1, 2, - - -, n}. The group of all permutations of A is the symmetric
group on n letters, and is denoted by S,,. ]

Note that S, has n! elements, where

nl=nn—1)n-2)---3)2)(1).
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123 123
Leta=(213>andt=(132).Thcn

ct(l)=0c(1)=2

and
to(l)=3

which says that T # to. Therefore 3 is not abelian. We have seen that any group with
at most four elements is abelian. Furthermore we will see later that up to isomorphism,
the abelian group Zs is the only group of order 5. Thus S; is the smallest group which
is not abelian.

123456
326145
Theorem 4.8 that the inverse function of a permutation is the group inverse. So it is easy
to find inverses for permutations, we simply turn the tables! That is, we switch the top
and bottom rows and sort the columns so the top row is in order:

o1 (123456
“\421563)" A

Suppose that o = ( ) We find the inverse o~!. We saw in the proof of

Disjoint Cycles

There is a more efficient way of specifying the action of a permutation. In the two-
row notation that we have been using, we list each number 1 through n twice, once
in the top row and once in the bottom row. Disjoint cycle notation allows us to write
the permutation using each number only once. We illustrate with an example. Let o =

123456 P . ..
(3 46251) To write in disjoint cycle notation we start by writing
1
We see that o'(1) = 3, so we place 3 just to the right of 1:
(1,3

Now we see that o maps 3 to 6, so we write:
(1,3,6

Our permutation maps 6 to 1, but there is no reason to write 1 again, so we just place a
parenthesis after the 6 to indicate that 6 maps back to the first element listed:

1,3,6)

This is called a cycle because when we apply o repeatedly, we cycle through the
numbers 1, 3, and 6. A cycle containing exactly k numbers is called a k-cycle. So the
cycle (1,3, 6) is a 3-cycle. This is not the end of the story for o because we have not
indicated that 2 maps to 4. So we start another cycle and write

(1,3,6)(2,4
to indicate that o maps 2 to 4. Since 4 maps back to 2, we obtain a 2-cycle:
1,3,6(2,4)

We still have not indicated what o does to 5. We can write (1, 3, 6)(2,4)(5) to indicate
that 5 maps to itself, but usually we will simply leave out 1-cycles with the understand-
ing that any number not listed maps to itself. So in disjoint cycle notation

o =(1,3,6)(2,4).
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We see that o is a product of a 3-cycle and a 2-cycle. Sometimes we refer to a
2-cycle as a transposition.

A collection of cycles is said to be disjoint if no entry is in more than one cycle.
Note that o could also be written as (3, 6, 1)(4, 2), (2,4)(1, 3, 6), or in a number of other
ways. In general it doesn’t matter which order we write the disjoint cycles, and inside
each cycle we can start with any number as long as we keep the cyclic order the same.
It is clear that any permutation in S, can be written in disjoint cycle notation and that
the representation is unique up to the order the cycles are written and the cyclic order
within each cycle.

In disjoint cycle notation, o € Sy is written as (1,5, 2, 7)(3,4, 9). Let us rewrite o in two-
row notation. Reading off the disjoint cycle notation we see that o(1) =5, o(5) = 2,
02)=7,0(7)=1,003)=4,0(4) =9, and 0(9) = 3. Since 6 and 8 do not appear in
either cycle, we know that ¢(6) = 6 and o(8) = 8. Therefore,

o (123456789
“\574926183

The operation that makes S, a group is composition of functions. Keeping this in mind,
we can see how to multiply permutations written in disjoint cycle notation.

A

Leto =(1,5,3,2,6) and T = (1,2,4,3,6) in S¢. Let us find o7 in disjoint cycle nota-
tion without resorting to using two-row notation. So

ot =(1,5,3,2,6)(1,2,4,3,6).

We need to rewrite this product in disjoint cycles. So we ask where 1 is mapped. Since
the operation is function composition, we see that the cycle T on the right sends 1 to
2 and then the cycle on the left sends 2 to 6. So ot(1) = 6 and we start our cycle by
writing
(1,6
Now we see that T maps 6 to 1 and o maps 1 to 5, so we write
(1,6,5

‘We note that 5 is not in the cycle (1,2,4,3,6), so 7(5) = 5 and 0 7(5) = o(5) = 3. So
we write

(1,6,5,3
Continuing in the same manner, we see that 3 maps to 1 and we complete the first cycle:
1,6,5,3)

‘We are now ready to start the second cycle. We note that we have still not seen where 2
maps, so we start the next cycle with 2 and we write

ot =(1,5,3,2,6)(1,2,4,3,6) = (1,6,5,3)(2,4)

using the same method we used for the first cycle. We know we are through since we
have used every number 1 through 6. A

Example 4.12 illustrates the process of multiplying permutations in general. We move
from right to left between the cycles, and within the cycles we move from left to right.
‘We compute the product of the permutations

o =(1,5)2,4(1,4,3)2,5)4,2,1)

using disjoint cycle notation.
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We start by seeing where 1 is mapped. The first cycle on the right maps 1 to 4.
We are using function composition, so we next check what (2, 5) does to 4, which is
nothing. So we move to the cycle (1,4, 3) and note that 4 is mapped to 3. Next, 3 is not
in the cycle (2,4) and so (2,4) does not move 3 . Finally, (1, 5) also does not move 3
and we conclude that o(1) = 3. We next need to determine where 3 is mapped by o and
continue until we arrive at

o =(1,3,5,4(2)=(1,3,5,4). A
It is interesting to note that in Example 4.13 the group was never specified. The same
calculation is valid whether the group is Ss, Se, or S, for any n > 5.
We compute the inverse of o = (1,5,7)(3, 8, 2,4, 6). We first note that in general for a
group (ab)~! =b~la"!, so

07'=(3,8,24,67"(157N".
The inverse of a cycle is simply the cycle written backward:

07! =(6,4,2,8,3)(7,5,1).

This is a perfectly good way of writing o1, but since disjoint cycles commute and we
can start each cycle with any entry in the cycle, we could write

o' =(1,7,5)2,8,3,6,4). A

With a little practice, computing products of permutations in disjoint cycle notation
becomes routine. We give the table for S3.

4.15 Table
$3
o t (1,2,3) (1,3,2) (1,2) (1,3) 2,3)
L t (1,2,3) (1,3,2) (1,2) (1,3) 2,3)
(1,2,3) | (1,2,3) (1,3,2) L (1,3) 2,3) (1,2)
(1,3,2) | (1,3,2) L (1,2,3) 2,3) (1,2) (1,3)
(1,2) (1,2) 2,3) (1,3) t (1,3,2) (1,2,3)
(1,3) (1,3) (1,2) 2,3) (1,2,3) L (1,3,2)
(2,3) 2,3) (1,3) 1,2)  (1,3,2) (1,23) t

Again we can see that S3 is not abelian since the table is not symmetric about the main
diagonal. We also notice that although disjoint cycles commute, the same cannot be
said for cycles that are not disjoint. For example we see in Table 4.15 that (1,2)(2,3) =
(1,2,3) #(1,3,2) = (2,3)(1,2).

The Dihedral Group

‘We next define a collection of finite groups based on the symmetries of regular n-gons.
To be specific, we use as our standard regular n-gon the one whose points are U,. Recall
that U, includes the point (1,0) and the other points are spaced uniformly around the
unit circle to form the vertices of a regular n-gon, which we denote by P,. We label the
points starting at (1,0) with 0 and continue labeling them 1,2,3,...,n — 1 around the
circle counterclockwise. Note that this is the same labeling as the isomorphism between
U, and Z, that we saw in Section 3. When we refer to a vertex we will reference it by
its label. So vertex O is the point (1,0). Note that the edges of P, consist of the line
segments between vertices k and k +, 1 for0 <k <n— 1.
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Let n > 3. Then D, is the set of all one-to-one functions ¢ : Z, — Z, that map onto Z,
with the property that the line segment between vertices i and j is an edge in P, if and
only if the line segment between ¢ (i) and ¢(j) is an edge of P,,. The n'" dihedral group
is the set D,, with binary operation function composition. ]

We justify calling (D,, o) a group with Theorem 4.17.
For any n > 3, (Dy, o) is a group.

We first show that function composition is an operation on D,. Let ¢,6 € D, and sup-
pose that the line between vertices i and j is an edge in P,. Since 6 € D,, the line
between 6(i) and 6(j) is an edge of P,. Because ¢ € D, and the line between 6(i) and
6(j) is an edge, the line between ¢(6(i)) = ¢ o 6(i) and $(0(j)) = ¢ o 6()) is an edge of
P..

We leave it to the reader to check that if the line segment between ¢(6(i)) = ¢ o 6(i)
and ¢(6(j)) = ¢ o 6(j) is an edge of Py, then the line segment between i and j is an edge
of P,.

We also know that the composition of one-to-one and onto functions is one-to-one
and onto, so ¢ o 6 € D,. Therefore, function composition is an operation on D,,.

The operation of composition of functions is associative, so & is satisfied. The
function ¢ : Z, — Zj, defined by ((k) = k is an identity in D,, so % is satisfied. Finally,
if ¢ € D,, then ¢~! € D,; the inverse function for f acts as the inverse in the group
sense, s0 & is satisfied. Therefore, (D, o) is a group. *

Following tradition, we will use multiplicative notation in the dihedral groups instead
of using o. If the operation on D,, were abelian, we could use additive notation, but in
Example 4.18 we find that D,, is not abelian.

Letn > 3 and p : Z, — Z, be given by rotating the n-gon P, by 27", which just rotates
each vertex to the next one. That is,

plk) =k+, 1

for each k € Z,, as can be visualized in Figure 4.19. The function p matches edges to
edges and it is one-to-one and onto. So p € D,.

A second element in D, is reflection about the x-axis, which we call . By glancing
at Figure 4.20 we see thatin Ds, u(0) = 0, (1) = 4, u(2) = 3, u(3) = 2,and u(4) = 1.
For any n > 3 in general, if k € Z,, then

uk) = —k.
(Recall that in Z,, —k is the additive inverse of k, whichis n — k fork > Oand —0 = 0.)
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Let us check if pp = pu. We start by checking what each function does to 0.

u(p(0)) = p(1)
=n-1

0(u(0)) = p(0)
=1

Since n > 3, n — 1 # 1, which implies that o # pp. Thus for all n > 3, D, is not
abelian. A

Let n > 3. The order of the dihedral group D, is 2n and
Dy ={t,0,0% 0%+, 0", i, o, 0%, o, - o™}

We first show there can be at most 2n elements of D,. If we map the vertices Z, to the
vertices Z,, vertex 0 has n possible images. Let y be the image of vertex 0. Since y is
connected by an edge to just two vertices, 1 must map to one of these two vertices. So
after the image of vertex 0 is determined, there are only two choices for the image of 1.
After the images of vertices 0 and 1 are determined, the rest are fixed. This means that
there are at most 2n elements of D,,.

To show that |D,| = 2n we only need to show that no two of the functions ¢ =
0% 0,0%,0%, .., 0"\ 1, up, up?, 1o, . .., up™! are the same. We first suppose that
pF = p” for some integers 0 <k <n—1and0 < r < n — 1. Then:

P5(©0) = p(0)

k+,0=r+,0
k=r
This shows that no two of t = p°, p, p?, p3,..., """ are the same.

We next show that no two of p = up®, up, ue%, np>, ..., up""" are the same. As
before we assume that up* = up” where0 <k <n—1land0<r<n—lare integers.
By cancellation, we have p* = p”. But then k = r as shown above. Therefore no two of
w=up® pp, up?, up’, ..., pp" ! are the same.

It now only remains to show that there are no values for k and r with p* = pp’.
Note that traversing the n-gon in the order

oK), p4(1), p4(2), -+, pH(n = 1)
progresses in a counterclockwise manner regardless of which k we use. On the other

hand,
10" 0), o (), up*(3), - - - , upt(m)

traverses the n-gon in a clockwise manner. This shows that there are no values of k and
r for which p* = pp". Therefore, D, has at least 2n elements. Combining this with the
fact that D,, has at most 2n elements shows that |D,,| = 2n and

Dy ={t,p,0% 0%+, 0" s, o, w0, o, -, o™} *

Theorem 4.21 says that if ¢ € D,, then there is an integer 0 < k < n — 1 such that either
¢ = p* or else ¢ = pp*. We refer to this representation of ¢ as the standard form.
We notice that each application of u reverses the direction traversed by the images of
0,1,2,3,...,n. We use this fact in the following example.

Let n > 3. We know pu # pp from Example 4.18, so let us determine pu € D, in
standard form. Each time we apply u we reverse the clock direction of the images of
0,1,2,3,...,n— 1. This means that upu reverses direction twice, so the rotation is



4.23 Example

4.24 Example

Section4 Nonabelian Examples 49

back to counterclockwise. Thus uop = p* for some k. We determine the value of k by
determining where 0 is sent:

k= pk0) = upp(©) = pp©) = () =n—1

Therefore,
upp = p"!

Multiplying both sides on the left by u yields:
pupp = pp"!
Since pu = ¢, we conclude that
on = pup" . A

When computing products in D,, we normally want our answer in standard form. This
is not difficult if we keep in mind a few basic facts about the group D,.. We have shown
some of the properties listed below, and the rest you will be asked to verify in the
exercises.

1. p"= (Rotatlon by 27 is the identity map.)

2. (p ") =p"

3. p, 1, which implies £ ~! = u (Reflect across a line twice is the identity map.)
4. = pp"* (Example 4.22 for k = 1 and Exercise 30 for any k.)

In the group Ds compute (102)(up). We see that

Wp®)(up) = pp up
= u(p*u)p
= p(uo® p
= u2p*
— o A

In the dihedral group D, compute (up0*)~!.
ety = (")t

n—k

n—(n—k)

=up
= upt A

In Example 4.24 we determined that the inverse of uo* is itself, which suggests that
up* could be reflection across a line of symmetry. In Exercise 37, you will be asked
to show this is the case. Geometrically, we can see that each of the elements of the
form p0* is reflection across a line. Placing one mirror along the line of reflection for
1 and another mirror along the line of reflection for pp is the basis for designing a
kaleidoscope. Any element in D, can be written as a product using only the elements
1 and up since we can write p = pup. In a kaleidoscope successive reflections across
the mirrors correspond to taking products involving u and pp. So the image you see in
the kaleidoscope has all the symmetries in D,,. That is, you can rotate the image by 36
or reflect it across any one of the lines of reflection for the elements up*. Figure 4.25 is
a typical image from a kaleidoscope with dihedral group D¢ symmetries.
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m EXERCISES 4

Computation
In Exercises 1 through 5, compute the indicated product involving the following permutations in S:
(1 23 456 (1 2 3 456 (1 23 456
T3 1 4562) TT\241365) HT\524316)
1. 7o 2. %0 3. po? 4. 0 2¢ 5. 07 't0
In Exercises 6 through 9, compute the expressions shown for the permutations o, 7, and u defined prior to Exer-
cise 1.
6. of 7. u? 8. g1 9, 100
10. Convert the permutations o, t, and u defined prior to Exercise 1 to disjoint cycle notation.
11. Convert the following permutations in Sg from disjoint cycle notation to two-row notation.
a. (1,4,5)(2,3)
b. (1,8,5)2,6,7,3,4)
¢ (1,2,3)(4,5)6,7,8)
12. Compute the permutation products.
a. (1,5,2,4)(1,5,2,3)
b. (1,5,3)(1,2,3,4,5,6)1,5,3)”"
¢ [(1,6,7,2)%(4,5,2,6)"'(1,7,3)1"!
d. (1,6)(1,5)(1,4)(1,3)(1,2)
13. Compute the following elements of D1,. Write your answer in standard form.
a. pp’up®
b. pp'Oup~

c. pup~!
d. (uoPu~lp=hH!

1

1ZI_creation/Shutterstock
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14. Write the group table for D3. Compare the group tables for D3 and S3. Are the groups isomorphic?

Let A be aset and let 0 € S4. For a fixed a € A, the set

O ={0"@|neZ}
is the orbit of @ under o. In Exercises 15 through 17, find the orbit of 1 under the permutation defined prior
to Exercise 1.

15. o 16. t 17. u
18. Verify that H = {, i1, p%, up?} € Dy is a group using the operation function composition.
19. a. Verify that the six matrices

1 00 010 0 01 1 00 0
010},]0 O 1|,]1 0 Of,|0 O 1{,|O
0 01 1 00 010 010 1

(=R =

1 010
0|,]1 0 0
0 0 01

B

form a group under matrix multiplication. [Hint: Don’t try to compute
0

stead, think how the column vector | 1 | is transformed by multiplying it on the left by each of the matrices.]
2

b. What group discussed in this section is isomorphic to this group of six matrices?

1 products of these matrices. In-

20. After working Exercise 18, write down eight matrices that form a group under matrix multiplication that is
isomorphic to Dy.
Concepts

In Exercises 21 through 23, correct the definition of the italicized term without reference to the text, if correction
is needed, so that it is in a form acceptable for publication.

21. The dihedral group D, is the set of all functions ¢ : Z, — Z, such that the line segment between vertex i and
vertex j of U, is an edge of P, if and only if the line segment between vertices ¢ (i) and ¢(j) in U, is an edge
of P,.

22. A permutation of a set S is a one-to-one map from S to S.
23. The order of a group is the number of elements in the group.

In Exercises 24 through 28, determine whether the given function is a permutation of R.
24. fi : R — R defined by fi(x) =x+ 1
25. f : R — R defined by fo(x) = x?
26. f3 : R — R defined by f3(x) = —x>
27. f4 : R — R defined by f3(x) = &*
28. f5 : R — R defined by fs(x) = x> — x% — 2x
29. Determine whether each of the following is true or false.
a. Every permutation is a one-to-one function.
b. Every function is a permutation if and only if it is one-to-one.
¢. Every function from a finite set onto itself must be one-to-one.
d. Every subset of an abelian group G that is also a group using the same operation as G is abelian.
e. The symmetric group S has 10 elements.
f. If ¢ € D,, then ¢ is a permutation on the set Z,.
g. The group D, has exactly n elements.
h. Dj3 is a subset of Dy.

Theory
30. Letn > 3 and k € Z,. Prove that in Dy, p*p = pp"*.
31. Show that S, is a nonabelian group for n > 3.
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32.

33.

34,

3s.

36.
37.

38.
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Strengthening Exercise 31, show that if n > 3, then the only element of o of S, satisfying oy = yo for all
y € Spis 0 =, the identity permutation.

Orbits were defined before Exercise 15. Let a,b € A and o € S4. Show that if O, and Op, have an element
in common, then O = Op 4.

(See the warning following Theorem 4.8.) Let G be a group with binary operation *. Let G’ be the same set as
G, and define a binary operation ¥ on G’ by x ¥’ y =y xx forall x,y € G.

a. (Intuitive argument that G’ under *’ is a group.) Suppose the front wall of your classroom were made
of transparent glass, and that all possible products a x b = ¢ and all possible instances a * (b *¢) =
(a * b) * ¢ of the associative property for G under x were written on the wall with a magic marker. What
would a person see when looking at the other side of the wall from the next room in front of yours?

b. Show from the mathematical definition of *' that G’ is a group under *'.

Give a careful proof using the definition of isomorphism that if G and G’ are both groups with G abelian and
G’ not abelian, then G and G’ are not isomorphic.

Prove that for any integer n > 2, there are at least two nonisomorphic groups with exactly 2n elements.

Letn > 3 and 0 < k < n — 1. Prove that the map upk € D, is reflection about the line through the origin that
makes an angle of — ”—k with the x—axis.

Letn >3 andk,r € Z,,. Based on Exercise 37, determine the element of D,, that corresponds to first reflecting
across the line through the origin at an angle of —m and then reflection across the line through the origin
making an angle of — ZL' . Prove your answer.

SECTION 5 SUBGROUPS
Subsets and Subgroups

You may have noticed that we sometimes have had groups contained within larger
groups. For example, the group Z under addition is contained within the group Q under
addition, which in turn is contained in the group R under addition. When we view the
group (Z,+) as contained in the group (R, +), it is very important to notice that the op-
eration + on integers »n and m as elements of (Z, +) produces the same element n + m
as would result if you were to think of n and m as elements in (R, +). Thus we should
not regard the group (Q™, ) as contained in (R, +), even though Q* is contained in R as
a set. In this instance, 2 - 3 = 6 in (Q*, ), while 2 + 3 = 5 in (R, +). We are requiring
not only that the set of one group be a subset of the set of the other, but also that the
group operation on the subset be the induced operation that assigns the same element
to each ordered pair from this subset as is assigned by the group operation on the whole
set.

5.1 Definition If a subset H of a group G is closed under the binary operation of G and if H with the
induced operation from G is itself a group, then H is a subgroup of G. We shall let
H < G or G = H denote that H is a subgroup of G, and H < G or G > H shall mean
H<GbutH #G. |

Thus (Z,+) < (R, +) but (Q, -} is not a subgroup of (R, +), even though as sets,
Q* c R. Every group G has as subgroups G itself and {e}, where e is the identity
element of G.

5.2 Definition If G is a group, then the subgroup consisting of G itself is the improper subgroup of G.
All other subgroups are proper subgroups. The subgroup {e} is the trivial subgroup
of G. All other subgroups are nontrivial.

We turn to some illustrations.
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Let R” be the additive group of all n-component row vectors with real number entries.
The subset consisting of all of these vectors having 0 as entry in the first component is
a subgroup of R". A

under multiplication is a proper subgroup of R* under multiplication.
Q™ und Itiplication is a proper subgroup of R* und Itiplicati A

The n'* roots of unity in C, U,, form a subgroup of U, the complex numbers whose
absolute value is 1, which in turn is a subgroup of C*, the nonzero complex numbers
under multiplication. A

Recall that Sz, is the set of all one-to-one functions mapping Z, onto Z, and D, is the
set of all one-to-one functions ¢ mapping Z, onto Z, with the further property that the
line segment between i and j is an edge of the regular n-gon P, if and only if the line
segment between ¢(i) and ¢(j) is an edge. D, C Sz,. Since both D, and Sz, are groups
under composition of functions, D, < Sz,. A

There are two different types of group structures of order 4 (see Exercise 20 of
Section 2). We describe them by their group tables (Tables 5.8 and 5.9). The group
V is the Klein 4-group.

The only nontrivial proper subgroup of Zj is {0, 2}. Note that {0, 3} is not a sub-
group of Zj, since {0, 3} is not closed under +. For example, 3 + 3 = 2, and 2 ¢ {0, 3}.
However, the group V has three nontrivial proper subgroups, {e,a}, {e, b}, and {e, c}.
Here {e,a, b} is not a subgroup, since {e,a, b} is not closed under the operation of V

because ab = c, and ¢ ¢ {e, a, b}. A
5.8 Table 5.9 Table
Zy: +)|0)|1]2)3 v: ela|b|c
0jo0|1]2(3 elelalble
111230 alalelcl|d
2121301 blblclela
313(0]1(2 cl|c ale

It is often useful to draw a subgroup diagram of the subgroups of a group. In such
a diagram, a line running downward from a group G to a group H means that H is a
subgroup of G. Thus the larger group is placed nearer the top of the diagram. Figure 5.10
contains the subgroup diagrams for the groups Z, and V of Example 5.7.

[ / i \
o “o \{e' b}/ o
o {e}

(@) (b)

5.10 Figure (a) Subgroup diagram for Z4. (b) Subgroup diagram for V.

Note that if H < G and a € H, then by Theorem 2.17, the equation ax = a must
have a unique solution, namely the identity element of H. But this equation can also
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be viewed as one in G, and we see that this unique solution must also be the identity
element e of G. A similar argument then applied to the equation ax = e, viewed in both
H and G, shows that the inverse a~! of a in G is also the inverse of a in the subgroup H.

Let F be the group of all real-valued functions with domain R under addition. The subset
of F consisting of those functions that are continuous is a subgroup of F, for the sum of
continuous functions is continuous, the function f where f(x) = 0 for all x is continuous
and is the additive identity element, and if f is continuous, then —f is continuous. A

It is convenient to have routine steps for determining whether a subset of a group
G is a subgroup of G. Example 5.11 indicates such a routine, and in the next theorem,
we demonstrate carefully its validity.

A subset H of a group G is a subgroup of G if and only if

1. H is closed under the binary operation of G,
2. the identity element e of G is in H, and
3. forallae H,a ! € H also.

The fact that if H < G then Conditions 1, 2, and 3 must hold follows at once from the
definition of a subgroup and from the remarks preceding Example 5.11.

Conversely, suppose H is a subset of a group G such that Conditions 1, 2, and 3
hold. By 2 we have at once that % is satisfied. Also & is satisfied by 3. It remains
to check the associative axiom, &. But surely for all a,b, ¢ € H it is true that (ab)c =
a(bc) in H, for we may actually view this as an equation in G, where the associative law
holds. Hence H < G. *

Let F be as in Example 5.11. The subset of F consisting of those functions that are
differentiable is a subgroup of F, for the sum of differentiable functions is differentiable,
the constant function 0 is differentiable, and if f is differentiable, then —f is differen-
tiable. A

Recall from linear algebra that every square matrix A has associated with it a number
det(A) called its determinant, and that A is invertible if and only if det(A) # 0.If A and B
are square matrices of the same size, then it can be shown that det(AB) = det(A) - det(B).
Let G be the multiplicative group of all invertible n x n matrices with entries in C and
let T be the subset of G consisting of those matrices with determinant 1. The equation
det(AB) = det(A) - det(B) shows that T is closed under matrix multiplication. Recall
that the identity matrix I, has determinant 1. From the equation det(A) - det(A~!) =
det(AA™") = det(l,) = 1, we see that if det(A) = 1, then det(A~!) = 1. Theorem 5.12
then shows that 7 is a subgroup of G. A

Theorem 5.15 provides an alternate way of checking that a subset of a group is a
subgroup.

A nonempty subset H of the group G is a subgroup of G if and only if for all a,b € G,
ab~! € G.

We leave the proof as Exercise 51. *

On the surface Theorem 5.15 may seem simpler than Theorem 5.12 since we only need
to show that H is not empty and one other condition. In practice, it is usually just as
efficient to use Theorem 5.12. On the other hand, Theorem 5.16 can often be used
efficiently.



5.16 Theorem

Proof
5.17 Example

5.18 Example

5.19 Theorem

Proof

Section 5 Subgroups 55

Let H be a finite nonempty subset of the group G. Then H is a subgroup of G if and
only if H is closed under the operation of G.

We leave the proof as Exercise 57. *

Recall that U, = {z € C| 7" = 1}. We could use Theorem 5.16 to verify that U, is a
subgroup of C* by noting that U, has exactly n elements, so U, is a finite nonempty
subset of C* and if z;, 2, € U, then (z122)" = 1, which implies that U, is closed under
multiplication. A

We verify that the subset H = {t = p%, p, 0%,..., 0"} C D, is a subgroup of D,. By
Theorem 5.16, we only need to check that H is closed under the operation of D,. Let
k,r € Z,. Then p*p” = p**" € H. Therefore H < D,,. A

Cyclic Subgroups

Let us see how large a subgroup H of Z;, would have to be if it contains 3. It would
have to contain the identity element 0 and 3 + 3, which is 6. Then it has to contain 6 + 3,
which is 9. Note that the inverse of 3 is 9 and the inverse of 6 is 6. It is easily checked
that H = {0, 3, 6, 9} is a subgroup of Zi,, and it is the smallest subgroup containing 3.

Let us imitate this reasoning in a general situation. As we remarked before, for
a general argument we always use multiplicative notation. Let G be a group and let
a € G. A subgroup of G containing a must, by Theorem 5.12, contain a", the result
of computing products of a and itself for n factors for every positive integer n. These
positive integral powers of a do give a set closed under multiplication. It is possible,
however, that the inverse of a is not in this set. Of course, a subgroup containing a must
also contain ¢!, and, in general, it must contain a~™ for all m € Z™. It must contain the
identity element e = a°. Summarizing, a subgroup of G containing the element a must
contain all elements a" (or na for additive groups) for all n € Z. That is, a subgroup
containing @ must contain {a"|n € Z}. Observe that these powers a" of a need not be
distinct. For example, in the group V of Example 5.7,

P =e d=a d'=e al=aq, and so on.

‘We have almost proved the next theorem.

Let G be a group and let a € G. Then
H= {a"|neZ}

is a subgroup of G and is the smallest” subgroup of G that contains a, that is, every
subgroup containing a contains H.

We check the three conditions given in Theorem 5.12 for a subset of a group to give a
subgroup. Since a"a® = a"** for r, s € Z, we see that the product in G of two elements
of H is again in H. Thus H is closed under the group operation of G. Also a° = e, so
e € H, and for a” € H,a™” € H and a~"a" = e. Hence all the conditions are satisfied,
and H < G.

 We may find occasion to distinguish between the terms minimal and smallest as applied to subsets of a set §
that have some property. A subset H of S is minimal with respect to the property if H has the property, and
no subset K C H,K # H, has the property. If H has the property and H C K for every subset K with the
property, then H is the smallest subset with the property. There may be many minimal subsets, but there can
be only one smallest subset. To illustrate, {e, a}, {e, b}, and {e, ¢} are all minimal nontrivial subgroups of the
group V. (See Fig. 5.10.) However, V contains no smallest nontrivial subgroup.
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Our arguments prior to the statement of the theorem showed that any subgroup of
G containing a must contain H, so H is the smallest subgroup of G containinga. @

Let G be a group and let a € G. Then the subgroup {a" |n € Z} of G, characterized
in Theorem 5.19, is called the cyclic subgroup of G generated by a, and denoted
by {(a). [

Let us find two of the cyclic subgroups to Dyg. We first consider (uo*) for k € Z;o.
Since (10%)? = ¢ and (up*)~! = up*, for any integer r, (up*)" is either up* or ¢. Thus

(up*) = {1, up}).

1

Since p~! = p°, every negative power of p is also a positive power of p and p'0 = ¢,

) ={t.p,0%....0%.
A

An element a of a group G generates G and is a generator for G if (a) = G. A group
G is cyclic if there is some element g in G that generates G. ||

Let Z4 and V be the groups of Example 5.7. Then Z, is cyclic and both 1 and 3 are
generators, that is,

(1) =(3) =Z4.

However, V is not cyclic, for (a), (b), and (c) are proper subgroups of two elements. Of
course, (e) is the trivial subgroup of one element. A

The group Z under addition is a cyclic group. Both 1 and —1 are generators for this
group, and they are the only generators. Also, for n € Z™, the group Z, under addition
modulo 7 is cyclic. If n > 1, then both 1 and n — 1 are generators, but there may be
others. A

Consider the group Z under addition. Let us find (3). Here the notation is additive, and
(3) must contain

3, 343=6, 3+3+3=09, and so on,
0, -3, -3+-3=-6, —3+-3+-3=-9, andsoon.

In other words, the cyclic subgroup generated by 3 consists of all multiples of 3, posi-
tive, negative, and zero. We denote this subgroup by 3Z as well as (3). In a similar way,
we shall let nZ be the cyclic subgroup (n) of Z. Note that 6Z < 3Z. A

For each positive integer n, U, is the multiplicative group of the nth roots of unity in
C. These elements of U, can be represented geometrically by equally spaced points on
a circle about the origin, as illustrated in Fig. 5.27. The point labeled represents the
number

2 .. 2@
¢ =cos— +isin—.
n n

The geometric interpretation of multiplication of complex numbers, explained in
Section 3, shows at once that as ¢ is raised to powers, it works its way counterclockwise
around the circle, landing on each of the elements of U, in turn. Thus U, under mul-
tiplication is a cyclic group, and ¢ is a generator. The group U, is the cyclic subgroup
(¢) of the group U of all complex numbers z, where |z| = 1, under multiplication. A
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Computations

In Exercises 1 through 6, determine whether the given subset of the complex numbers is a subgroup of the group
C of complex numbers under addition.

1. R 2. Qt 3. 72

4. The set iR of pure imaginary numbers including 0

5. The set 7Q of rational multiples of 6. The set {n" |n € Z}

7. Which of the sets in Exercises 1 through 6 are subgroups of the group C* of nonzero complex numbers under
multiplication?

In Exercises 8 through 13, determine whether the given set of invertible n x n matrices with real number entries is
a subgroup of GL(n, R).
8. The n x n matrices with determinant greater than or equal to 1
9. The diagonal n x n matrices with no zeros on the diagonal
10. The n x n matrices with determinant 2* for some integer k
11. The n x n matrices with determinant —1
12. The n x n matrices with determinant —1 or 1

13. The set of all n x n matrices A such that (AT)A = I,. [These matrices are called orthogonal. Recall that AT,
the transpose of A, is the matrix whose jth column is the jth row of A for 1 < j < n, and that the transpose
operation has the property (AB)T = (BT)(AT).]

Let F be the set of all real-valued functions with domain R and let F" be the subset of F consisting of those functions
that have a nonzero value at every point in R. In Exercises 14 through 19, determine whether the given subset of
F with the induced operation is (a) a subgroup of the group F under addition, (b) a subgroup of the group F under
multiplication.

14. The subset F

15. The subset of all f € F such that f(1) =0
16. The subset of all f € F such that f(1) = 1
17. The subset of all f € F such that £(0) = 1
18. The subset of all f € F such that £(0) = —1
19. The subset of all constant functions in F.
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20. Nine groups are given below. Give a complete list of all subgroup relations, of the form G; < Gj, that exist
between these given groups G1, G, - - - , Gy.
G1 = Z under addition
G2 = 12Z under addition
G3 = Q% under multiplication
G4 = R under addition
Gs = R* under multiplication
Ge¢ = {n" | n € Z} under multiplication
G7 = 3Z under addition
Gg = the set of all integral multiples of 6 under addition
Gg = {6" | n € Z} under multiplication
21. Write at least 5 elements of each of the following cyclic groups.
a. 25Z under addition
b. {(3)" | n € Z} under multiplication
¢. {7 | n € Z} under multiplication
d. (p?) in the group Dig
e. ((1,2,3)(5,6)) in the group S¢
In Exercises 22 through 25, describe all the elements in the cyclic subgroup of GL(2, R) generated by the given
2 x 2 matrix.

2[00 [ w[Y =[9

26. Which of the following groups are cyclic? For each cyclic group, list all the generators of the group.
Gi=(Z+) G=(Q+) G3=(Q",) Gs=(6Z+)
Gs = {6" | n € Z} under multiplication
Ge={a+ 2 | a,b € Z} under addition
In Exercises 27 through 35, find the order of the cyclic subgroup of the given group generated by the indicated
element.
27. The subgroup of Z4 generated by 3
28. The subgroup of V generated by c (see Table 5.9)
29. The subgroup of Ug generated by cos ZT" + isin ZT"
30. The subgroup of Z;¢ generated by 8
31. The subgroup of Z;¢ generated by 12
32. The subgroup of the symmetric group Sg generated by (2,4, 6,9)(3,5,7)
33. The subgroup of the symmetric group S1o generated by (1, 10)(2,9)(3, 8)(4, 7)(5, 6)
34. The subgroup of the multiplicative group G of invertible 4 x 4 matrices generated by

35. The subgroup of the multiplicative group G of invertible 4 x 4 matrices generated by

-0 o0

1
0
010
0

36. a. Complete Table 5.28 to give the group Zg of 6 elements.
b. Compute the subgroups (0), (1), (2), (3), (4), and (5) of the group Zg given in part (a).
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¢. Which elements are generators for the group Zg of part (a)?
d. Give the subgroup diagram for the part (b) subgroups of Zg. (We will see later that these are all the sub-

groups of Zg.)
5.28 Table
Zg: + |01 3 5
001
1]1]2]|3]|4 0
212
313
4|14
515
Concepts

In Exercises 37 and 38, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

37. A subgroup of a group G is a subset H of G that contains the identity element e of G and also contains the
inverse of each of its elements.

38. A group G is cyclic if and only if there exists a € G such that G = {a" | n € Z}.

39. Determine whether each of the following is true or false.

a. The associative law holds in every group.

b. There may be a group in which the cancellation law fails.

¢. Every group is a subgroup of itself.

d. Every group has exactly two improper subgroups.

e. In every cyclic group, every element is a generator.

f. A cyclic group has a unique generator.

g. Every set of numbers that is a group under addition is also a group under multiplication.
h. A subgroup may be defined as a subset of a group.

i. Z4 is a cyclic group.

j- Every subset of every group is a subgroup under the induced operation.
k. For any n > 3, the dihedral group D, has at least n + 2 cyclic subgroups.

40. Show by means of an example that it is possible for the quadratic equation x2 = e to have more than two
solutions in some group G with identity e.

In Exercises 41 through 44 let B be a subset of A, and let b be a particular element of B. Determine whether the
given set is a subgroup of the symmetric group S4 under the induced operation. Here o[B] = {o(x) | x € B}.

41. {0 € S4|o(b) = b}

42, {0 € S4|o(b) € B}

43. {0 € S4|o[B] C B}

4. {0 € Sp|o[B] = B}

Theory

In Exercises 45 and 46, let ¢ : G — G’ be an isomorphism of a group (G, *) with a group (G’, *'). Write out a
proof to convince a skeptic of the intuitively clear statement.
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If H is a subgroup of G, then ¢[H] = {¢(h) | h € H} is a subgroup of G'. That is, an isomorphism carries
subgroups into subgroups.

. If there is an a € G such that (a) = G, then G is cyclic.
47.

Show that if H and K are subgroups of an abelian group G, then
{hk |h € H and k € K}
is a subgroup of G.

. Find an example of a group G and two subgroups H and K such that the set in Exercise 47 is not a subgroup

of G.
Prove that for any integer n > 3, S, has a subgroup isomorphic with Dj,.

Find the flaw in the following argument: “Condition 2 of Theorem 5.12 is redundant, since it can be derived
from 1 and 3, forleta € H. Thena~! € H by 3, and by 1, aa~! = e is an element of H, proving 2.”

Prove Theorem 5.15.
Prove that if G is a cyclic group and |G| > 3, then G has at least 2 generators.

Prove that if G is an abelian group, written multiplicatively, with identity element e, then all elements x of G
satisfying the equation x*> = ¢ form a subgroup H of G.

Repeat Exercise 53 for the general situation of the set H of all solutions x of the equation x" = e for a fixed
integer n > 1 in an abelian group G with identity e.

Find a counterexample to Exercise 53 if the assumption of abelian is dropped.

Show that if a € G, where G is a finite group with identity e, then there exists n € Z* such that a” = e.
Prove Theorem 5.16.

Let G be a group and let a be one fixed element of G. Show that

H, = {x € G|xa = ax}
is a subgroup of G.

Generalizing Exercise 58, let S be any subset of a group G.
a. Show that Hg = {x € G|xs = sx for all s € S} is a subgroup of G.

b. In reference to part (a), the subgroup Hg is the center of G. Show that Hg is an abelian group.

. Let H be a subgroup of a group G. For a,b € G, leta ~ b if and only if ab~! € H. Show that ~ is an equiva-

lence relation on G.
For sets H and K, we define the intersection H N K by

HNK={x|xe Handx € K}.

Show that if H < G and K < G, then H N K < G. (Remember: < denotes “is a subgroup of,” not “is a subset
of.”)

. Prove that every cyclic group is abelian.

63. Let G be a group and let G, = {g" | g € G}. Under what hypothesis about G can we show that G, is a subgroup

of G?

64. Show that a group with no proper nontrivial subgroups is cyclic.

. Cracker Barrel Restaurants place a puzzle called “Jump All But One Game” at each table. The puzzle starts

with golf tees arranged in a triangle as in Figure 5.29a where the presence of a tee is noted with a solid dot
and the absence is noted with a hollow dot. A move can be made if a tee can jump over one adjacent tee and
land on an empty space. When a move is made, the tee that is jumped over is removed. A possible first move
is shown in Figure 5.29b. The goal is to have just one remaining tee. Use the Klein 4-group to show that no
matter what sequence of (legal) moves you make, the last remaining tee cannot be in a bottom corner position.
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CycLic GROUPS
Recall the following facts and notations from Section 5. If G is a group and a € G, then
H={d"|neZ}

is a subgroup of G (Theorem 5.19). This group is the cyclic subgroup (a) of G gener-
ated by a. Also, given a group G and an element g in G, if

G={d"|neZ},

then a is a generator of G and the group G = (a) is cyclic. We introduce one new bit of
terminology. Let a be an element of a group G. If the cyclic subgroup (a) of G is finite,
then the order of a is the order |(a)| of this cyclic subgroup. Otherwise, we say that a
is of infinite order. We will see in this section that if a € G is of finite order m, then m
is the smallest positive integer such that a” = e.

The first goal of this section is to describe all cyclic groups and all subgroups of
cyclic groups. This is not an idle exercise. We will see later that cyclic groups serve
as building blocks for a significant class of abelian groups, in particular, for all finite
abelian groups. Cyclic groups are fundamental to the understanding of groups.

Elementary Properties of Cyclic Groups

We start with a demonstration that cyclic groups are abelian.

Every cyclic group is abelian.
Let G be a cyclic group and let a be a generator of G so that
G=(a)={d"| neZ}.

If g1 and g, are any two elements of G, there exist integers r and s such that g; = ¢” and
g2 = a’. Then

+s s+r

gigy=da =d" =a"" =ad'ad =gg,

so G is abelian. L 2

We shall continue to use multiplicative notation for our general work on cyclic
groups, even though they are abelian.

The division algorithm that follows is well known and seems pretty simple. In fact,
this algorithm is taught in elementary school. If you divide an integer n by a positive
integer m, you get an integer quotient ¢ with a remainder r where 0 < r < m. You might
write this as n < m = g R r, which of course means ;. = g + ;.. Multiplying both sides
by m gives the form of the division algorithm that is a fundamental tool for the study of
cyclic groups.
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6.2 Division Algorithm for Z If m is a positive integer and n is any integer, then there exist unique integers g

and r such that

n=mq+r and O0<r<m.

Proof We give an intuitive diagrammatic explanation, using Fig. 6.3. On the number line, mark

6.4 Example

Solution

6.5 Example

Solution

off the multiples of m and the position of n. Now n falls either on a multiple gm of m
and r can be taken as 0, or n falls between two multiples of m. If the latter is the case,
let gm be the first multiple of m to the left of n. Then r is as shown in Fig. 6.3. Note that
0 < r < m. Uniqueness of g and r follows since if » is not a multiple of m so that we
can take r = 0, then there is a unique multiple gm of m to the left of n and at distance
less than m from n, as illustrated in Fig. 6.3. *

r n
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=
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v
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-m 0 m 2m qam  (g+ )m

n
——
n<0,g<0 — /I_ f
gm (g + m -m 0 m 2m

6.3 Figure

In the notation of the division algorithm, we regard g as the quotient and r as the
nonnegative remainder when n is divided by m.

Find the quotient g and remainder » when 38 is divided by 7 according to the division
algorithm.

The positive multiples of 7 are 7, 14, 21, 28, 35, 42, - - - . Choosing the multiple to leave
a nonnegative remainder less than 7, we write

38=35+3=75)+3

so the quotient is g = 5 and the remainder is r = 3. A

Find the quotient ¢ and remainder r when —38 is divided by 7 according to the division
algorithm.

The negative multiples of 7 are —7, —14, —21, —28, —35, —42, - - - . Choosing the mul-
tiple to leave a nonnegative remainder less than 7, we write

—38=—-424+4=7(-6)+4
so the quotient is g = —6 and the remainder is r = 4. A

We will use the division algorithm to show that a subgroup H of a cyclic group G is
also cyclic. Think for a moment what we will have to do to prove this. We will have to
use the definition of a cyclic group since we have proved little about cyclic groups yet.
That is, we will have to use the fact that G has a generating element a. We must then
exhibit, in terms of this generator a, some generator ¢ = a™ for H in order to show that
H is cyclic. There is really only one natural choice for the power m of a to try. Can you
guess what it is before you read the proof of the theorem?
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A subgroup of a cyclic group is cyclic.

Let G be a cyclic group generated by a and let H be a subgroup of G. If H = {e},
then H = (e) is cyclic. If H # {e}, then a" € H for some n € Z*. Let m be the smallest
integer in Z* such that a™ € H.

We claim that ¢ = @™ generates H; that is,

H = (a™) = (c).

‘We must show that every b € H is a power of ¢. Since b € H and H < G, we have
b = a" for some n. Find g and r such that

n=mq+r for O0<r<m
in accord with the division algorithm. Then
a" = a™*" = (@™)d’,
)
a = (@ "
Now since a" € H,a™ € H, and H is a group, both ()7 and a" are in H. Thus
(@) a" e H, that is, a e€eH.

Since m was the smallest positive integer such that @™ € H and 0 < r < m, we must have
r =0. Thus n = mq and
b=a"=@)=¢,
so b is a power of c. L 4
As noted in Examples 5.24 and 5.25, Z under addition is cyclic and for a positive
integer n, the set nZ of all multiples of » is a subgroup of Z under addition, the cyclic

subgroup generated by n. Theorem 6.6 shows that these cyclic subgroups are the only
subgroups of Z under addition. We state this as a corollary.

The subgroups of Z under addition are precisely the groups nZ under addition forn € Z.
L 4

This corollary gives us an elegant way to define the greatest common divisor of two
positive integers r and s. Exercise 54 shows that H = {nr + ms | n,m € Z} is a subgroup
of the group Z under addition. Thus H must be cyclic and have a generator d, which we
may choose to be positive.

Let r be a positive integer and s be a non-negative integer. The positive generator d of
the cyclic group
H={nr+ms|nmeZ}

under addition is the greatest common divisor (abbreviated gcd) of r and 5. We write
d = ged(r, s). ]

Note that dZ = H, r = 1r + Os € H, and s = Or + 1s € H. This implies that r, s €
dZ, which says that d is a divisor of both r and s. Since d € H, we can write

d=nr+ms

for some integers n and m. We see that every integer dividing both r and s divides the
right-hand side of the equation, and hence must be a divisor of d also. Thus d must
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be the largest number dividing both r and s; this accounts for the name given to d in
Definition 6.8.

The fact that the greatest common divisor d of r and s can be written in the form
d = nr + ms for some integers n and m is called Bézout’s identity. Bézout’s identity is
very useful in number theory, as we will see in studying cyclic groups.

Find the gcd of 42 and 72.

The positive divisors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42. The positive divisors of 72
are 1,2,3,4,6, 8,9, 12, 18, 24, 36, and 72. The greatest common divisor is 6. Note
that 6 = (3)(72) + (—5)(42). There is an algorithm for expressing the greatest common
divisor d of r and s in the form d = nr + ms, but we will not need to make use of it here.
The interested reader can find the algorithm by searching the Internet for the Euclidean
algorithm and Bézout’s identity. A

Two positive integers are relatively prime if their gcd is 1. For example, 12 and 25
are relatively prime. Note that they have no prime factors in common. In our discussion
of subgroups of cyclic groups, we will need to know the following:

If r and s are relatively prime and if r divides sm, then r must divide m. )

Let’s prove this. If r and s are relatively prime, then we may write

1=ar+bs for some a,beZ.
Multiplying by m, we obtain

m = arm + bsm.

Now r divides both arm and bsm since r divides sm. Thus r is a divisor of the right-hand
side of this equation, so r must divide m.
The Structure of Cyclic Groups
We can now describe all cyclic groups, up to an isomorphism.

Let G be a cyclic group with generator a. If the order of G is infinite, then G is isomor-
phic to (Z, +). If G has finite order n, then G is isomorphic to (Z,, +,).

Case I For all positive integers m,a™ # e. In this case we claim that no two
distinct exponents & and k can give equal elements @ and a* of G.
Suppose that @" = a* and say h > k. Then

ad'at=a"*=e,

contrary to our Case I assumption. Hence every element of G can be
expressed as a™ for a unique m € Z. The map ¢ : G — Z given by
¢(a’) = i is thus well defined, one-to-one, and onto Z. Also,

$(dd) = p(a™) = i+j = ¢(@) + $(),

so the homomorphism property is satisfied and ¢ is an isomorphism.
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CaseIl a™ = e for some positive integer m. Let n be the smallest positive
integer such that a" = e. If s € Z and s = nqg + r for 0 < r < n, then
a=a"""=(@a")a =ela =a.AsinCase 1,if0 <k < h < nand
a"=dk thena"*=eand0 <h—k <n, contradicting our choice of
n. Thus the elements

a=ead,d,- - ,a"!
are all distinct and comprise all elements of G. The map ¢ : G — Z,
given by ¥ (a’) = ifori=0,1,2,--- ,n — 1 is thus well defined,
one-to-one, and onto Z,. Because a” = e, we see that a'@’ = a* where
k =i+,j. Thus

V(@) = i+nj = P(@) +a ¥ (@),

so the homomorphism property is satisfied and ¥ is an isomorphism.
L 4

a* 2

6.11 Figure 6.12 Figure

Motivated by our work with U,,, it is nice to visualize the elements e = a°,a', 4?2, - - ,
a"~! of a cyclic group of order n as being distributed evenly on a circle (see Fig. 6.11).
The element a” is located h of these equal units counterclockwise along the circle, mea-
sured from the right where e = a® is located. To multiply a” and a* diagrammatically,
we start from a” and go k additional units around counterclockwise. To see arithmeti-
cally where we end up, find g and r such that

h+k=ng+r for O<r<n
The nq takes us all the way around the circle g times, and we then wind up at a”. A

Figure 6.12 is essentially the same as Fig. 6.11 but with the points labeled with the
exponents on the generator. The operation on these exponents is addition modulo n.

This is simply the isomorphism between (a) and Z,. Of course this is the same
isomorphism we saw when we defined Z, from U, but using a instead of ¢.

As promised at the beginning of this section, we can see now that the order of an
element a in a group G is simply the smallest positive number r such that a" = e.

Let us find the order of the k-cycle, o = (a1, a3, a3, . .., a), in the symmetric group.
The order of o is the smallest postive power of o that is . Note that applying o just
maps each number to the next one in the cyclic order. So after k applications of o, each
number maps back to itself, but not before k applications of o'. Therefore, the order of a
k-cycle is k. A
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Subgroups of Finite Cyclic Groups

‘We have completed our description of cyclic groups and turn to their subgroups. Corol-
lary 6.7 gives us complete information about subgroups of infinite cyclic groups. Let us
give the basic theorem regarding generators of subgroups for the finite cyclic groups.

Let G be a cyclic group with n elements and generated by a. Let b € G and let b = a°.
Then b generates a cyclic subgroup H of G containing n/d elements, where d is the
greatest common divisor of n and s. Also, {(a°) = (a') if and only if gcd(s, n) = ged(t, n).

That b generates a cyclic subgroup H of G is known from Theorem 5.19. We need show
only that H has n/d elements. Following the argument of Case II of Theorem 6.10, we
see that H has as many elements as the smallest positive power m of b that gives the
identity. Now b = a°, and b™ = e if and only if (@*)" = e, or if and only if n divides ms.
What is the smallest positive integer m such that n divides ms? Let d be the gcd of n and
s. Then there exist integers u and v such that

d=un+vs.
Since d divides both n and s, we may write

1 =u(n/d) + v(s/d)

where both n/d and s/d are integers. This last equation shows that r/d and s/d are
relatively prime, for any integer dividing both of them must also divide 1. We wish to
find the smallest positive m such that

ms _ m(s/d) .

= is an integer.
n (n/d)

From the division property (1) following Example 6.9, we conclude that n/d must divide
m, so the smallest such m is n/d. Thus the order of H is n/d.

Taking for the moment Z, as a model for a cyclic group of order n, we see that if d
is a divisor of n, then the cyclic subgroup (d) of Z, has n/d elements, and contains all
the positive integers m less than n such that gcd(m, n) = d. Thus there is only one sub-
group of Z, of order n/d. Taken with the preceding paragraph, this shows at once that if
a is a generator of the cyclic group G, then (a*) = (a') if and only if gcd(s,n) =
ged(t, n).

For an example using additive notation, consider Z;,, with the generator a = 1. Since
the greatest common divisor of 3 and 12 is 3, 3 = 3 - 1 generates a subgroup of % =4
elements, namely

(3) =10,3,6,9}.
Since the ged of 8 and 12 is 4, 8 generates a subgroup of 14—2 = 3 elements, namely,
(8) ={0,4,8}.

Since the ged of 12 and 5 is 1, 5 generates a subgroup of % = 12 elements; that is, 5 is
a generator of the whole group Z;,. A

The following corollary follows immediately from Theorem 6.15.

If a is a generator of a finite cyclic group G of order n, then the other generators of G
are the elements of the form a”, where r is relatively prime to n.
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Let us find all subgroups of Z;s and give their subgroup diagram. All subgroups are
cyclic. By Corollary 6.17, the elements 1, 5, 7, 11, 13, and 17 are all generators of Z;s.
Starting with 2,

(2) =1{0,2,4,6,8,10,12, 14, 16}.

is of order 9 and has as generators elements of the form 42, where h is relatively prime
to 9, namely, h = 1,2,4,5,7,and 8, so h2 = 2,4, 8, 10, 14, and 16. The element 6 of (2)
generates {0, 6, 12}, and 12 also is a generator of this subgroup.

We have thus far found all subgroups generated by 0, 1, 2,4, 5, 6, 7, 8, 10, 11, 12,
13, 14, 16, and 17. This leaves just 3, 9, and 15 to consider.

(3) =1{0,3,6,9,12,15},

and 15 also generates this group of order 6, since 15 =5 - 3, and the gcd of 5 and 6 is
1. Finally,

9) =1{0,9}.
The subgroup diagram for these subgroups of Zg is given in Fig. 6.19.

VN
AN
AN

6.19 Figure  Subgroup diagram for Z;3g.

This example is straightforward; we are afraid we wrote it out in such detail that it
may look complicated. The exercises give some practice along these lines. A

Let G be a finite cyclic group and H < G. Then |H| divides |G|. That is, |G| is a multiple
of |H|.

Let g be a generator for G and let n = |G|. By Theorem 6.6, H is cyclic, so there is
an element in A € H such that h generates H. Since h € H < G, h = g° for some s.
Theorem 6.15 states that

n

H| =
IH] ged(n, 5)

which is a divisor of n. *

We find all orders of the subgroups of Z,g. Factoring gives 28 = 22 - 7, so the possible
orders of subgroups of the cyclic group Z,g are 1, 2, 4, 7, 14, and 28. We note that
O} =1, K14)| =2, (T)] = 4, [{4)| =7, |(2)] = 14, [(1}| = |Z2g| = 28. So there are
subgroups of order 1, 2, 4, 7, 14, and 28. A

Actually, Corollary 6.20 can be strengthened considerably. The assumption that G
is cyclic is completely unnecessary. As we will see in Section 10, Lagrange’s Theorem
states that for any finite group, the order of a subgroup divides the order of the group.
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m EXERCISES 6

Computations

In Exercises 1 through 4, find the quotient and remainder, according to the division algorithm, when n is divided
by m.

Ln=2m=9 2.n=-42,m=9
3.n=-37,m=38 4. n=37,m=8
In Exercises 5 through 7, find the greatest common divisor of the two integers.

5. 32 and 24 6. 48 and 88 7. 360 and 420

In Exercises 8 through 11, find the number of generators of a cyclic group having the given order.
8.5 9.8 10. 24 11. 84

An isomorphism of a group with itself is an automorphism of the group. In Exercises 12 through 16, find the
number of automorphisms of the given group.
[Hint: You may use Exercise 53. What must be the image of a generator under an automorphism?]

12. 7, 13. Zg 14. Zg 15. Z 16. Zgs

In Exercises 17 through 23, find the number of elements in the indicated cyclic group.

17. The cyclic subgroup of Z3o generated by 25

18. The cyclic subgroup of Z4, generated by 30

19. The cyclic subgroup (i) of the group C* of nonzero complex numbers under multiplication
20. The cyclic subgroup of the group C* of Exercise 19 generated by (1 + i)/+/2

21. The cyclic subgroup of the group C* of Exercise 19 generated by 1 + i

22, The cyclic subgroup (%) of Dag

23. The cyclic subgoup (p>%) of D375

24. Consider the group S

a. What is the order of the cycle (2,4, 6,7)?

What is the order of (1,4)(2,3,5)? Of (1,3)(2,4,6,7,8)?

¢. What is the order of (1, 5,9)(2,6,7)? Of (1,3)(2,5,6,8)?

d. What is the order of (1,2)(3,4,5,6,7,8)? Of (1,2,3)(4,5,6,7,8,9)?

e. State a theorem suggested by parts (c) and (d). [Hint: The important words you are looking for are least
common multiple.]

=

In Exercises 25 through 30, find the maximum possibe order for an element of S, for a given value of n.
25.n=5 26. n=6 27.n=17
28. n=8 29. n=10 30. n=15

In Exercises 31 through 33, find all subgroups of the given group, and draw the subgroup diagram for the sub-
groups.

31. Zy, 32. Zsg 33. Zs

In Exercises 34 through 38, find all orders of subgroups of the given group.

34. Zg 35. Zg 36. Z12 37. Zy 38. Z17
Concepts

In Exercises 39 and 40, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

39. An element a of a group G has order n € Z* if and only if a" = e.
40. The greatest common divisor of two positive integers is the largest positive integer that divides both of them.
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Determine whether each of the following is true or false.

a. Every cyclic group is abelian.

b. Every abelian group is cyclic.

¢. Q under addition is a cyclic group.

. Every element of every cyclic group generates the group.

. There is at least one abelian group of every finite order >0.

. Every group of order <4 is cyclic.

. All generators of Zyg are prime numbers.

. If G and G’ are groups, then GN G’ is a group.

. If H and K are subgroups of a group G, then H N K is a group.

j- Every cyclic group of order >2 has at least two distinct generators.

o e BU0Q em 0O B

In Exercises 42 through 46, either give an example of a group with the property described, or explain why no
example exists.

42.
43.
4.
45.
46.

A finite abelian group that is not cyclic

An infinite group that is not cyclic

A cyclic group having only one generator

An infinite cyclic group having four generators
A finite cyclic group having four generators

The generators of the cyclic multiplicative group U,, of all nth roots of unity in C are the primitive nth roots of
unity. In Exercises 47 through 50, find the primitive nth roots of unity for the given value of n.

47. n=4

48. n=6

49. n=38

50. n=12

Proof Synopsis

51. Give a one-sentence synopsis of the proof of Theorem 6.1.

52,

Give at most a three-sentence synopsis of the proof of Theorem 6.6.

Theory

53.

54.
55.
56.
57.

Let G be a cyclic group with generator a, and let G’ be a group isomorphic to G. If ¢ : G — G’ is an isomor-
phism, show that, for every x € G, $(x) is completely determined by the value ¢(a). That is, if ¢ : G — G
and ¥ : G —> G’ are two isomophisms such that ¢(a) = ¥ (a), then ¢(x) = Y (x) forall x € G.

Let r and s be integers. Show that {nr + ms| n,m € Z} is a subgroup of Z.

Prove that if G is a finite cyclic group, H and K are subgroups of G, and H # K, then |H| # |K]|.
Let a and b be elements of a group G. Show that if ab has finite order n, then ba also has order n.
Let r and s be positive integers.

a. Define the least common multiple of r and s as a generator of a certain cyclic group.
b. Under what condition is the least common multiple of r and s their product, rs?

¢. Generalizing part (b), show that the product of the greatest common divisor and of the least common
multiple of r and s is rs.
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58.
59.

61.
62.
63.
. Show that in a finite cyclic group G of order n, written multiplicatively, the equation x™ = e has exactly m

65.
. Show that Z, has no proper nontrivial subgroups if p is a prime number.
67.
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Show that a group that has only a finite number of subgroups must be a finite group.

Show by a counterexample that the following “converse” of Theorem 6.6 is not a theorem: “If a group G is
such that every proper subgroup is cyclic, then G is cyclic.”

. Let G be a group and suppose a € G generates a cyclic subgroup of order 2 and is the unigue such element.

Show that ax = xa for all x € G. [Hint: Consider (xax~!)2.]

Prove that if G is a cyclic group with an odd number of generators, then G has two elements.

Let p and g be distinct prime numbers. Find the number of generators of the cyclic group Z,.

Let p be a prime number. Find the number of generators of the cyclic group Z,-, where r is an integer > 1.

solutions x in G for each positive integer m that divides n.
With reference to Exercise 64, what is the situation if 1 < m < n and m does not divide n?

Let G be an abelian group and let H and X be finite cyclic subgroups with |H| = r and |K| = s.
a. Show that if r and s are relatively prime, then G contains a cyclic subgroup of order rs.
b. Generalizing part (a), show that G contains a cyclic subgroup of order the least common multiple of r and s.

SECTION 7 GENERATING SETS AND CAYLEY DIGRAPHS

Let G be a group, and let a € G. We have described the cyclic subgroup (a) of G, which
is the smallest subgroup of G that contains the element a. Suppose we want to find as
small a subgroup as possible that contains both a and b for another element b in G. By
Theorem 5.19, we see that any subgroup containing a and b must contain ¢" and b™ for
all m,n € Z, and consequently must contain all finite products of such powers of a and b.
For example, such an expression might be ab*a~3b?a’. Note that we cannot “simplify”
this expression by writing first all powers of a followed by the powers of b, since G may
not be abelian. However, products of such expressions are again expressions of the same
type. Furthermore, e = a° and the inverse of such an expression is again of the same
type. For example, the inverse of a*b*ab’a’ is a=b~2a*h~*a~2. By Theorem 5.12,
this shows that all such products of integral powers of a and b form a subgroup of G,
which surely must be the smallest subgroup containing both @ and b. We call @ and b
generators of this subgroup. If this subgroup should be all of G, then we say that {a, b}
generates G. Of course, there is nothing sacred about taking just two elements a,b € G.
We could have made similar arguments for three, four, or any number of elements of G,
as long as we take only finite products of their integral powers.

7.1 Example As we have seen, the dihedral group is generated by {i, p} since every element in D,
can be written in the form p* or o for 0 < k < n. Also, {u, j1p} generates D, since
p = u(pp), so any element in the dihedral group can also be written as a product of
copies of © and pp. It is interesting to note that both w and o have order 2, while in
the generating set {u, o} one element has order 2, but the other has order n. A

7.2 Example The Klein 4-group V = {e, a, b, c} of Example 5.7 is generated by {a, b} since ab = c.
It is also generated by {a, c}, {, ¢}, and {a, b, ¢}. If a group G is generated by a subset S,
then every subset of G containing S generates G. A

7.3 Example The group Zg is generated by {1} and {5}. It is also generated by {2, 3} since2 +3 =5,
so that any subgroup containing 2 and 3 must contain 5 and must therefore be Zg. It is
also generated by {3, 4}, {2, 3, 4}, {1, 3}, and {3, 5}, but it is not generated by {2, 4}
since (2) = {0, 2,4} contains 2 and 4. A
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We have given an intuitive explanation of the subgroup of a group G generated by
a subset of G. What follows is a detailed exposition of the same idea approached in
another way, namely via intersections of subgroups. After we get an intuitive grasp of
a concept, it is nice to try to write it up as neatly as possible. We give a set-theoretic
definition and generalize a theorem that was in Exercise 61 of Section 5.

Let {S; | i € I} be a collection of sets. Here I may be any set of indices. The intersection
N;erS; of the sets S; is the set of all elements that are in all the sets S;; that is,

qSi={x|xeSifora11i€I}.
1€

If I is finite, I = {1, 2,...,n}, we may denote N;¢;S; by
S1NSN---NS,. [ |

For any group G and any nonempty collection of subgroups {H; < G |i € I}, the inter-
section of all the subgroups H;, N;¢/H;, is also a subgroup of G.

Let us show closure. Let a € Ni;H; and b € N H;, so that a € H; for all i € I and
b e H;foralli e l. Then ab € H; forall i € I, since H; is a group. Thus ab € N;g/H;.
Since H; is a subgroup for all i € I, we have e € H; for all i € I, and hence
e € NierH;.
Finally, for a € N;c;H;, we have a € H; foralli € I, soa~! € H; forall i € I, which
implies that a! € NigH;. *

Let G be a group and let g; € G for i € I. There is at least one subgroup of G
containing all the elements a; for i € I, namely G is itself. Theorem 7.5 assures us that
if we take the intersection of all subgroups of G containing all g; for i € I, we will obtain
a subgroup H of G. This subgroup H is the smallest subgroup of G containing all the a;
foriel.

Let G be a group and let g; € G for i € I. The smallest subgroup of G containing {g; | i €
I} is the subgroup generated by {a; | i € I}. If this subgroup is all of G, then {g; |i €
I} generates G and the g; are generators of G. If there is a finite set {a; |i € I} that
generates G, then G is finitely generated. ]

Note that this definition is consistent with our previous definition of a generator for
a cyclic group. Note also that the statement a is a generator of G may mean either that
G = (a) or that a is a member of a subset of G that generates G. The context in which
the statement is made should indicate which is intended. Our next theorem gives the
structural insight into the subgroup of G generated by {g; | i € I} that we discussed for
two generators before Example 7.1.

If Gisa group and a; € G fori € I # ¢, then the subgroup H of G generated by {a; |i €
I} has as elements precisely those elements of G that are finite products of integral
powers of the a;, where powers of a fixed a; may occur several times in the product.

Let K denote the set of all finite products of integral powers of the ;. Then K C H.
We need only observe that K is a subgroup and then, since H is the smallest subgroup
containing a; for i € I, we will be done. Observe that a product of elements in X is
again in K. Since (a;)° = e, we have e € K. For every element k in K, if we form from
the product giving k a new product with the order of the a; reversed and the opposite
sign on all exponents, we have k™!, which is thus in K. For example,

[(@1)@2)(@) 7] ™" = @) (@) (@),
which is again in K. *



72

PartI

7.8 Example

7.9 Example

7.12 Example

Groups and Subgroups

Recall that the dihedral group D, consists of permutations of Z, that map edges to edges
in the regular n-gon P,. In disjoint cycle notation, p = (0,1,2,3,...,n — 1) and u =
(Ln—=1)2,n—2)--- (%52, 2L)ifnisodd,and p = (1,n — )2, n — 2) - - - (552, 12)
if n is even. Since u? =t and p" = ¢ any product of integer powers of 4 and p can be
rewritten to only have powers of 0 or 1 for x and powers of 0,1,2,3,...n — 1 for p.
Furthermore, the relation pu = pp"~! allows us to move all the powers of i to the left
and all the powers of p to the right, being careful to replace p with p"~! each time we

move a p past a p. So in the case of n = 6,
02’ = p*u = pup® = uo’o’® = pp*.
Thus the subgroup of Sz, generated by 1 and p is the set
(Lo, 0% 0", 0, ., o™}
which is the dihedral group. A

Cayley Digraphs

For each generating set S of a finite group G, there is a directed graph representing the
group in terms of the generators in S. The term directed graph is usually abbreviated as
digraph. These visual representations of groups were devised by Cayley, and are also
referred to as Cayley diagrams in the literature.

Intuitively, a digraph consists of a finite number of points, called vertices of the di-
graph, and some arcs (each with a direction denoted by an arrowhead) joining vertices.
In a digraph for a group G using a generating set S we have one vertex, represented by
a dot, for each element of G. Each generator in § is denoted by one type of arc. We
could use different colors for different arc types in pencil and paperwork. Since differ-
ent colors are not available in our text, we use different style arcs, like solid, dashed,
and dotted, to denote different generators. Thus if § = {a, b, ¢} we might denote

aby ——, bby———>——--, and cby e P .

With this notation, an occurrence of x «——»>——y in a Cayley digraph means that
xa =y. That is, traveling an arc in the direction of the arrow indicates that multiplication
of the group element at the start of the arc on the right by the generator corresponding
to that type of arc yields the group element at the end of the arc. Of course, since
we are in a group, we know immediately that ya—! = x. Thus traveling an arc in the
direction opposite to the arrow corresponds to multiplication on the right by the inverse
of the corresponding generator. If a generator in S is its own inverse, it is customary to
denote this by omitting the arrowhead from the arc, rather than using a double arrow.
For example, if b> = e, we might denote bby ________.

Both of the digraphs shown in Fig. 7.10 represent the group Ze¢ with generating set
S = {1}. Neither the length and shape of an arc nor the angle between arcs has any
significance. A

Both of the digraphs shown in Fig. 7.11 represent the group Zg with generating set S =
{2, 3}. Since 3 is its own inverse, there is no arrowhead on the dashed arcs representing 3.
Notice how different these Cayley diagrams look from those in Fig. 7.10 for the same
group. The difference is due to the different choice for the set of generators. A

Every digraph for a group must satisfy these four properties for the reasons
indicated.
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0
5 L 0 1 2 3
4 2
4
3 5
(b)

@)

7.10 Figure  Two digraphs for Zg with S = {1} using I

7/ d
\\ a \\ b /
ba®
ba®
/// \\\ L “'ba \\\ .
a
(a) (b)
7.13 Figure
Property Reason
1. The digraph is connected, that is, Every equation gx = h has a solution
we can get from any vertex g to in a group.

any vertex h by traveling along
consecutive arcs, starting at g and

ending at h.

2. At most one arc goes from a vertex The solution of gx = h is unique.
g to a vertex h.

3. Each vertex g has exactly one arc For g € G and each generator b we
of each type starting at g, and one can compute gb, and (gh~")b = g.
of each type ending at g.

4. If two different sequences of arc If gg = hand gr = h, then ug =
types starting from vertex g lead ug~'h=ur.

to the same vertex A, then those
same sequences of arc types starting
from any vertex u will lead to

the same vertex v.
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Groups and Subgroups

It can be shown that, conversely, every digraph satisfying these four properties is a
Cayley digraph for some group. Due to the symmetry of such a digraph, we can choose
labels like a, b, c for the various arc types, name any vertex e to represent the identity,
and name each other vertex by a product of arc labels and their inverses that we can
travel to attain that vertex starting from the one that we named e. Some finite groups
were first constructed (found) using digraphs.

A digraph satisfying the four properties given above is shown in Fig. 7.13 (a). To obtain
Fig. 7.13 (b), we selected the labels

a
named a vertex e, and then named the other vertices as shown. We have a group

{e,a, a%,a%, b, ba, ba*, ba® }

of eight elements. From the diagram we could compute any product. For example, to
compute ba*ba® we start at the vertex labeled ba?, follow a dotted edge, and then follow
three solid edges to arrive at a. Note that the way we labeled the vertices is not unique.
For example, the vertex labeled ba® could have been labeled ab simply by going along a
different path starting at e. This says that ab = ba®. We also see that a* = e and b? = e.
We hope that this example is starting to look familiar. In fact, Figure 7.13 is a Cayley
digraph of the dihedral group D,. We simply relabel a with p and b with p! A

m EXERCISES 7

Computations
In Exercises 1 through 8, list the elements of the subgroup generated by the given subset.
1. The subset {2, 3} of Z;» 2. The subset {4, 6} of Z1
3. The subset {4,6} in Zys 4. The subset {12, 30} of Z3e
5. The subset {12, 42} of Z 6. The subset {18, 24, 39} of Z
7. The subset {u, up?} in Dg 8. The subset {0®, ') in D5
9. Use the Cayley digraph in Figure 7.15 to compute these products. Note that the solid edges represent the

generator g and the dashed lines represent b.

a. (ba®)d®

b. (ba)(ba®) ¢c. b(a*b)
€ a
N L
b c
h g
g \\
f d

7.15 Figure
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In Exercises 10 through 12, give the table for the group having the indicated digraph. In each digraph, take e as
identity element. List the identity e first in your table, and list the remaining elements alphabetically, so that your
answers will be easy to check.

10.
11.
12.

The digraph in Fig. 7.16(a)
The digraph in Fig. 7.16(b)
The digraph in Fig. 7.16(c)

e a
e f—T a // \\
1
: ! b ’\ / ¢
L
1
bé—d¢ -——-
d f
(@) (b) ©
7.16 Figure

Concepts

13.
14.

15.
16.

17.

18.
19.

20.

How can we tell from a Cayley digraph whether or not the corresponding group is commutative?

Using the condition found in Exercise 13, show that the group corresponding to the Cayley digraph in Figure
7.13 is not commutative.

Is it obvious from a Cayley digraph of a group whether or not the group is cyclic? [Hint: Look at Fig. 7.9(b).]
The large outside triangle in Fig. 7.11(b) exhibits the cyclic subgroup {0, 2, 4} of Zg. Does the smaller inside
triangle similarly exhibit a cyclic subgroup of Ze? Why or why not?

The generating set S = {1,2} for Z¢ contains more generators than necessary, since 1 is a generator for the
group. Nevertheless, we can draw a Cayley digraph for Zg with this generating set S. Draw such a Cayley
digraph.

Draw a Cayley digraph for Zg with generating set S = {2, 5}.

A relation on a set S of generators of a group G is an equation that equates some product of generators and

their inverses to the identity e of G. For example, if S = {a, b} and G is commutative so that ab = ba, then one
relation is aba~'b~! = e. If, moreover, b is its own inverse, then another relation is > = e.

a. Explain how we can find some relations on S from a Cayley digraph of G.
b. Find three relations on the set S = {a, b} of generators for the group described by Fig. 7.13(b).

Draw digraphs of the two possible structurally different groups of order 4, taking as small a generating set as
possible in each case. You need not label vertices.

Theory

21.

22,

Use Cayley digraphs to show that for n > 3, there exists a nonabelian group with 2n elements that is generated
by two elements of order 2.

Prove that there are at least three different abelian groups of order 8. [Hint: Find a Cayley digraph for a group
of order 8 having one generator of order 4 and another of order 2. Find a second Cayley digraph for a group of
order 8 having three generators each with order 2.]
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GROUPS OF PERMUTATIONS

Let ¢ : G — G’ be a function mapping the group G to G'. Recall that the homomor-
phism property of an isomorphism states that for all a, b € G, ¢(ab) = ¢(a)p(b). When-
ever a function has this property whether or not the function is one-to-one or onto, we
say that ¢ is a group homomorphism. Of course any group isomorphism is a group
homomorphism, but the reverse is not necessarily true.

Let G and G’ be groups with ¢ : G — G’. The map ¢ is a homomorphism if the
homomorphism property
¢(ab) = $(a)p(b)
holds for all a,b € G. [ |
Let ¢ : R — U (the circle group) be defined by the formula
@ (x) = cos(2mx) + isinRwx) = €5,
Then
¢(a+ b) = cos(2m(a + b)) + isin2m(a + b)) = &¥*@*H),

Using either the usual properties of the exponential function or the formulas from
trigonometry involving the sum of two angles, we see that

¢(a + b) = (cos2ma) + i sin(2ma))(cos(2b) + isin(2mb)) = ¥ b,
SO
d(a+b) = p(a)p(b),

which says that ¢ is a group homomorphism. Although ¢ maps onto U, it is not one-to-
one, so ¢ is not an isomorphism.
The identity 0 € R maps to 1, the identity in U. Furthermore, for any x € R,
; 1
o _ L -1
P = e = o = (0) A
77
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8.3 Example

8.4 Definition

8.5 Theorem

Proof

8.6 Definition

Structure of Groups

Recall that U, = {z € C|7" = 1). Let ¢ : Usg — Uy be given by ¢(z) = z'. To check
that ¢ is well defined, we see that if 7 € Usg, then 228 = 1. Therefore, (z7)* = 1, which
implies that 7' € Uy. We check that ¢ is a homomorphism.

o) = @122) = 27, = $(21)P(22).

As in the previous example, ¢ maps the identity in Usg, in this case 1, to the identity 1
in Uy. Furthermore,

o H=7"=C""=@6" A
Let ¢ : X — Y and suppose that A C X and B C Y. The set ¢[A] = {¢(a) |a € A} is

called the image of A in Y under the mapping ¢. The set ~'[B] = {a € A | ¢(a) € B}
is called the inverse image of B under the mapping ¢. |

The four properties of a homomorphism given in the theorem that follows are obvious
in the case of an isomorphism since we think of an isomorphism as simply relabeling
the elements of a group. However, it is not obvious that these properties hold for all
homomorphisms whether or not they are one-to-one or onto maps. Consequently, we
give careful proofs of all four properties.

Let ¢ be a homomorphism of a group G into a group G'.

1. If e is the identity element in G, then ¢(e) is the identity element ¢’ in G'.
2. IfaeG,then¢(a') = ¢p(a)~'.

3. If H is a subgroup of G, then ¢[H] is a subgroup of G'.

4. If K’ is a subgroup of G/, then ¢~![K’] is a subgroup of G.

Loosely speaking, ¢ preserves the identity element, inverses, and subgroups.

Let ¢ be a homomorphism of G into G’. Then
¢(e) = d(ee) = (e)p(e).

Multiplying on the left by ¢(e)~", we see that ¢’ = ¢(e). Thus ¢(e) must be the identity
element ¢ in G'. The equation

¢ =¢(e) = plaa™") = p(@)p(a™")

shows that ¢(a~!) = ¢(a)~! foralla € G.

Turning to Statement (3), let H be a subgroup of G, and let ¢(a) and ¢(b) be any
two elements in ¢[H]. Then ¢(a)p(b) = ¢(ab), so we see that ¢(a)p(b) € ¢[H]; thus,
¢[H] is closed under the operation of G'. The fact that ¢’ = ¢(e) and ¢p(a~") = ¢(a)~!
completes the proof that ¢[H] is a subgroup of G'.

Going the other way for Statement (4), let K’ be a subgroup of G’. Suppose a
and b are in ¢~ '[K’]. Then ¢(a)@(b) € K’ since K’ is a subgroup. The equation ¢(ab) =
¢(a)¢(b) shows that ab € ¢p~![K’]. Thus ¢~'[K'] is closed under the binary operation in
G. Also, K’ must contain the identity element ¢’ = ¢(e), so e € ¢~ [K']. Ifa € ¢~ [K"],
then ¢(a) € K’, so ¢(a)~! € K'. But ¢(a)~! = ¢p(a™"), so we must have a~! € ¢~![K"].
Hence ¢~'[K’] is a subgroup of G. *

Let ¢ : G — G’ be a homomorphism and let ¢’ be the identity element of G'. Now
{e'} is a subgroup of G, so ¢~'[{¢}] is a subgroup H of G by Statement (4) in Theorem
8.5. This subgroup is critical to the study of homomorphisms.

Let ¢:G— G be a homomorphism of groups. The subgroup ¢ ![{¢}] =
{x € G| ¢(x) = ¢} is the kernel of ¢, denoted by Ker(¢). | |
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We will use the kernel of a homomorphism when we define the alternating group
later in this section.

Another extreme is to let H = G in Statement (3) of Theorem 8.5. In this case,
the theorem says that ¢[G] is a subgroup of G’. We use this in the proof of Cayley’s
Theorem.

In Example 8.2, the homomorphism ¢ : R — U is defined by ¢(x) = cos(2mx) +
isin(27rx) = e¥**. The kernel of ¢ is the set of integers since cos(27rx) + i sin(2wx) = 1
if and only if x is an integer.

Let n be a positive integer. Then (i) is a subgroup of R and

(4] -slizmez]

= {cos(2rm/n + isin(2rm/n)) |m € Z}
=U,. A

Let ¢ : Z, — D, be given by ¢(k) = p*. We check that ¢ is a homomorphism. Let
a,beZ, fa+b<n,thena+,b=a+b,sodla+,b)=dla+b)=p*’ = p°pt
=¢(a)p(b). If a+b>n, then ¢p(a+nb)=¢la+b—n)=p**"=pipbp™ =
p°p? = ¢(a)p(b). The image P[Z,] is (p). A

Cayley’s Theorem

Each of the groups we have seen so far is isomorphic to a subgroup of permutations on
some set. For example, Z, is isomorphic with the cyclic group ((1,2,3,...,n)) < S,.
The dihedral group D, is defined to be the permutations in Sz, with the property that
the line segment between vertices i and j is an edge in P,, a regular n-gon, if and only
if the line segment between the images of i and j is also an edge. The infinite group
GL(n, R) can be thought of as invertible linear transformations of R". Each element of
GL(n, R) permutes the vectors in R”, which makes GL(n, R) isomorphic with a permu-
tation group on vectors in R”. We refer to a subgroup of a permutation group as a group
of permutations. Cayley’s Theorem states that any group is isomorphic with a group
of permutations.

At first Cayley’s Theorem seems like a remarkable result that could be used to
understand all groups. In fact, this is a nice and intriguing classic result. Unfortunately,
approaching group theory by trying to determine all possible permutation groups is not
feasible. On the other hand, Cayley’s theorem does show the strength and generality of
permutation groups and it deserves a special place in group theory for that reason. For
example, if we wish to find a counterexample to a conjecture about groups, provided
that there is one, it will occur in a permutation group.

It may seem a mystery how we could start with an arbitrary group and come up with
a permutation group that is isomorphic with the given group. The key is to think about
the group table. Each row contains each element of the group exactly once. So each row
defines a permutation of the elements of the group by placing the table head as the top
row in the two-row representation of a permutation and placing the row corresponding
to an element a in the group as the bottom row. Table 8.9 is the group table for D3. Note
that the permutation obtained using the row up is

¢t p PP opup up?
up up®> w Pt o p )°
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Dy | ¢ p P2 u o pp?
' L o P n owo  pp?
e | e PP w® u we
2| P e wp wet
| mw owe wt o p PP

wo | mp we®t w P2 0 p

wo? | et w we o P*

All that remains to prove Cayley’s Theorem, at least when the group is finite, is to
check that the permutations obtained from the group table form a group isomorphism
with the original group. Let A, be the permutation of the elements of G given by the
x row of the table for G. Then for any g € G, A,(g) is the entry in the x row and g
column of the group table. In other words, A,(g) = xg, which is perfectly valid in the
case of an infinite as well as a finite group. We formalize this connection between G and
permutations on G in Definition 8.10.

Let G be a group. The function ¢ : G — S¢ given by ¢(x) = A, where A,(g) = xg for
all g € G is called the left regular representation of G. |

In order to be sure that A, is a permutation, it should be verified that A, is both one-to-one
and onto. We see that A, is one-to-one since if Ay(a) = A,(b), xa = xb and cancellation
gives a = b. Also, A, maps onto G because for any b € G, A.(x"'b)) = b. We are now
ready to prove Cayley’s Theorem.

(Cayley’s Theorem) Every group is isomorphic to a group of permutations.

Let G be a group. The left regular representation provides a map ¢ : G — Sg defined
by ¢(x) = A,. We must verify that ¢ is a group homomorphism and that ¢ is one-to-one.
Then ¢[G] is a subgroup of S; by Theorem 8.5 and ¢ : G — ¢[G] is an isomorphism.

We first show that ¢ is one-to-one. Suppose that a,b € G and ¢(a) = ¢(b). Then
the permutations A, and A, are the same, so A,(e) = A,(e). Thus ae = be and a = b. So
¢ is one-to-one.

‘We now need to show that ¢ is a group homomorphism. Let a, b € G. Then ¢(ab) =
Aap and @,Pp = A,Ap. We must show that the two permutations A4, and A,A, are the
same. Let g € G.

rab(g) = (ab)g = a(bg) = Aa(bg) = La(Ap(8)) = (Aads)(®).

Thus A, = AgAp, which implies that ¢(ab) = ¢(a)p(b). So ¢ is a one-to-one homomor-
phism, which completes the proof. L 2

The proof of Cayley’s Theorem shows that any group G is isomorphic with a subgroup
of S¢, but this is typically not the smallest symmetric group that has a subgroup isomor-
phic with G. For example, D, is isomorphic with a subgroup of Sz, while the proof of
Cayley’s Theorem gives a subgroup of Sp, and D, has 2n elements while Z, has only n
elements. On the surface, it may seem that Z¢ cannot be isomorphic with a subgroup of
S forn < 6, but (1,2,3)(4,5) € Ss generates a subgroup isomorphic with Zg. A

We defined the left regular representation in Definition 8.10. We now define the right
regular representation. Instead of A, representing the row for x in the group table, we
use oy, to represent the column with head x. Instead of using ¢ for the function that sends
X to A, we use 7, which sends x to o,-1.
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® HISTORICAL NOTE
rthur Cayley (1821-1895) gave an abstract-  being unable to find a suitable teaching post. In
sounding definition of a group in a paper of 1863, he finally became a professor at Cambridge.
1854: “A set of symbols, 1,e, B,---, all of them In 1878, he returned to the theory of groups by
different and such that the product of any two of  publishing four papers, in one of which he stated
them (no matter in what order) or the product of  Theorem 8.11 of this text; his “proof” was simply
any one of them into itself, belongs to the set,  to notice from the group table that multiplication by
is said to be a group.” He then proceeded to de- any group element permuted the group elements.
fine a group table and note that every line and  However, he wrote, “this does not in any wise show
column of the table “will contain all the symbols  that the best or the easiest mode of treating the gen-
1,a,B,---.” Cayley’s symbols, however, always eral problem [of finding all groups of a given order]
represented operations on sets; it does not seem is thus to regard it as a problem of [permutations].
that he was aware of any other kind of group. He It seems clear that the better course is to consider
noted, for instance, that the four matrix operations  the general problem in itself.”
1, = inversion, B = transposition, and y = af, The papers of 1878, unlike the earlier one,
form, abstractly, the non-cyclic group of four ele- found a receptive audience; in fact, they were an
ments. In any case, his definition went unnoticed  important influence on Walther von Dyck’s 1882
for a quarter of a century. axiomatic definition of an abstract group, the defi-
This paper of 1854 was one of about 300 writ-  nition that led to the development of abstract group
ten during the 14 years Cayley was practicing law, theory.
8.13 Definition Let G be a group. The map 7 : G — S given by t(x) = 0,-1 where o,(g) = gx is called
the right regular representation of G. ]

We could have used the right regular representation to prove Cayley’s Theorem instead
of the left regular representation. Exercise 54 asks for the details of the proof.

Even and Odd Permutations

It seems reasonable that every reordering of the sequence 1,2,...,n can be achieved
by repeated interchange of positions of pairs of numbers. We discuss this a bit more

formally.

8.14 Definition

A cycle of length 2 is a transposition.

Thus a transposition leaves all elements but two fixed, and maps each of these onto
the other. A computation shows that

8.15 Theorem

8.16 Example

(a1,a2, -+ ,a,) = (a1, ax)(a1, 1) - - - (a1, a3)(a1, a2).

Therefore any cycle of length n can be written as a product of n — 1 transpositions.
Since any permutation of a finite set can be written as a product of cycles, we have the
following.

Any permutation of a finite set containing at least two elements is a product of
transpositions. ¢

Naively, this theorem just states that any rearrangement of r objects can be achieved
by successively interchanging pairs of them.

Following the remarks prior to the theorem, we see that (1, 6) (2, 5, 3) is the product
(1, 6) (2, 3) (2, 5) of transpositions. A
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8.19 Theorem

Proof

Structure of Groups

In S, for n > 2, the identity permutation is the product (1, 2) (1, 2) of transpositions.
A

We have seen that every permutation of a finite set with at least two elements is a
product of transpositions. The transpositions may not be disjoint, and a representation
of the permutation in this way is not unique. For example, we can always insert at the
beginning the transposition (1, 2) twice, because (1, 2) (1, 2) is the identity permutation.
What is true is that the number of transpositions used to represent a given permutation
must either always be even or always be odd. This is an important fact. The proof
involves counting orbits and was suggested by David M. Bloom.

Let o € Sy and a € A. We let the orbit of a be the set {o%(a) | k € Z}. In the case
of o € Sp, a simple way to think of the orbit of a is to think of the elements in the cycle
containing a in the disjoint cycle representation of o.

Leto = (1,2,6)(3,5) € S¢. Then the orbit of 1 is the set {1, 2, 6}, which is also the orbit
of 2 and the orbit of 6. The set {3, 5} is the orbit of 3 and the orbit of 5. What about the
orbit of 4? Recall that if we include 1-cycles, o = (1, 2, 6)(3, 5)(4), which says the orbit
of 4 is {4}. A

No permutation in S, can be expressed both as a product of an even number of transpo-
sitions and as a product of an odd number of transpositions.

Let o € S, and let T = (i, ) be a transposition in S,. We claim that the number of orbits
of o and of 7o differ by 1.

Case I Suppose i and j are in different orbits of o. Write o as a product of
disjoint cycles, the first of which contains j and the second of which
contains i, symbolized by the two circles in Fig. 8.20. We may write the
product of these two cycles symbolically as

(B.J, x, %, xX)(@, i, X, X)

where the symbols x denote possible other elements in these orbits.

8.20 Figure

Computing the product of the first three cycles in o = (i, j)o', we obtain
@@ )b, j, x, x, x)a,i, x, x) = (a,j, X, X, X, b, i, X, X).

The original 2 orbits have been joined to form just one in 7o as

symbolized in Fig. 8.20. Exercise 42 asks us to repeat the computation

to show that the same thing happens if either one or both of i and j
should be the only element of their orbit in o.

Case II  Suppose i and j are in the same orbit of o. We can then write o as a
product of disjoint cycles with the first cycle of the form

(a,i, %, X, X, b, j, X, x)
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8.21 Figure

8.22 Definition

8.23 Example
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shown symbolically by the circle in Fig. 8.20. Computing the product of
the first two cycles in o = (i,j)o, we obtain
@)@, i, X, X, X, b,j, X, X) = (a,], X, x)(b, i, X, X, X).
The original single orbit has been split into two as symbolized in
Fig. 8.21.

‘We have shown that the number of orbits of to differs from the number of
orbits of o by 1. The identity permutation ¢ has n orbits, because each element is
the only member of its orbit. Now the number of orbits of a given permutation
o € §, differs from n by either an even or an odd number, but not both. Thus it is
impossible to write

O =T1T2T3 Tyl

where the 74 are transpositions in two ways, once with m even and once with m
odd. *

A permutation of a finite set is even or odd according to whether it can be expressed
as a product of an even number of transpositions or the product of an odd number of
transpositions, respectively. ]

The identity permutation ¢ in S, is an even permutation since we have ¢ = (1,2)(1,2). If
n = 1 so that we cannot form this product, we define ¢ to be even. On the other hand,
the permutation (1, 4, 5, 6) (2, 1, 5) in S can be written as

(1,4,5,6)(2,1,5) = (1,6)(1,5)(1,4)(2,5)(2, 1)

which has five transpositions, so this is an odd permutation. A

The Alternating Groups

We claim that for r» > 2, the number of even permutations in S, is the same as the
number of odd permutations; that is, S, is split equally and both numbers are (n!)/2.
To show this, let A, be the set of even permutations in S, and let B, be the set of odd
permutations for n > 2. We proceed to define a one-to-one function from A, onto B,.
This is exactly what is needed to show that A, and B, have the same number of elements.

Let 7 be any fixed transposition in S,; it exists since n > 2. We may as well suppose
that T = (1,2). We define a function

At A, > B,
by
A(0) =70,

that is, o € A, is mapped into (1,2)o by A.. Observe that since o is even, the per-
mutation (1,2)o can be expressed as a product of a (1 + even number), or odd num-
ber, of transpositions, so (1,2)o is indeed in B,. If for o and p in A, it is true that
Ar(0) = A- (), then

1,2)0 =(1,2)u,
and since S, is a group, we have 0 = . Thus A, is a one-to-one function. Finally,
t=(1,2)=1t7",
so if p € B, then

tlp €A,



84

Part II
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Structure of Groups

and
A o) =1 o) = p.

Thus A, maps onto B,. Hence the number of elements in A, is the same as the number
in B, since there is a one-to-one correspondence between the elements of the sets.

Note that the product of two even permutations is again even. Also since n > 2,5,
has the transposition (1, 2) and ¢ = (1,2)(1,2) is an even permutation. Finally, note that
if o is expressed as a product of transpositions, the product of the same transpositions
taken in just the opposite order is o ~!. Thus if o is an even permutation, o~! must
also be even. Referring to Theorem 5.12, we see that we have proved the following
statement.

If n > 2, then the collection of all even permutations of {1,2,3,--- ,n} forms a sub-
group of order n!/2 of the symmetric group Sy.

We can define a function called the sign of a permutation, sgn : S, — {1, —1} by
the formula

() = 1 if o is even
S8 =1 _1 if o is odd.

Thinking of {1, —1} as a group under multiplication, it is easy to see that sgn is a ho-
momorphism. Since 1 is the identity in the group {1, —1}, Ker(sgn) = sgn~'[{1}] is a
subgroup of S, consisting of all the even permutations. The homomorphism sgn is used
in the standard way of defining the determinant of a square matrix. Exercise 52 asks you
to prove some of the standard facts about determinants using this definition.

The subgroup of S, consisting of the even permutations of n letters is the alternating
group A, on n letters. |

Both S, and A, are very important groups. Cayley’s theorem shows that every finite
group G is structurally identical to some subgroup of S, for n = |G|. It can be shown
that there are no formulas involving just radicals for solution of polynomial equations
of degree n for n > 5. This fact is actually due to the structure of A,, surprising as that
may seem!

m EXERCISES 8

Computations

In Exercises 1 through 10 determine whether the given map is a group homomorphism. [Hint: To verify that a map
is a homomorphism, you must check the homomorphism property. To check that a map is not a homomorphism
you could either find a and b such that ¢(ab) # ¢(a)p(b), or else you could determine that any of the properties in

Theorem 8.5 fail.]

1. Let ¢ : Z1p — Z be given by ¢(x) = the remainder when x is divided by 2.
2. Let ¢ : Z9 — Z be given by ¢(x) = the remainder when x is divided by 2.
3. Let ¢ : Q* > Q* be given by ¢(x) = |x].

4. Let ¢ : R — R™ be given by ¢(x) = 2*.

5. Let ¢ : Dy — Z4 be given by ¢(o’) = ¢(up’) = ifor0 <i < 3.
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6. Let F be the additive group of all functions mapping R to R. Let ¢ : F — F be given by ¢(f) = g where
8() =f(x) +x.

7. Let F be as in Exercise 6 and ¢ : F — F be defined by ¢(f) = 5f.

8. I_f,} F be the additive group of all continuous functions mapping R to R. Let ¢ : F — R be defined by ¢(g) =

/0 g(x)dx.

9. Let M, be the additive group of n x n matrices with real entries. Let ¢ : M,, — R be given by ¢(A) = det(A),
the determinant of A.

10. Let M, be as in Exercise 9 and ¢ : M, — R be defined by ¢(A) = tr(A) where tr(A) is the trace of A, which is
the sum of the entries on the diagonal.

In Exercises 11 through 16, compute the kernel for the given homomorphism ¢.

11. ¢ : Z — Zg such that ¢(1) = 6.

12. ¢ : Z — Z such that ¢(1) = 12.

13. ¢ : Z x Z — Z where ¢(1,0) = 3 and ¢(0, 1) = —5.

14. ¢ : Z x Z — Z where ¢(1,0) = 6 and ¢(0,1) = 9.

15. ¢ : Z x Z — Z x Z where ¢(1,0) = (2,5) and ¢(0, 1) = (-3,2).

16. Let D be the additive group of all differentiable functions mapping R to R and F the additive group of all
functions from R to R. ¢ : D — F is given by ¢(f) = f/, the derivative of f.

In Exercises 17 through 22, find all orbits of the given permutation.

1 2 3 4 5 6 1 23 45 6 7 8
17'(513624) 18'(56248317
19 1 23 456 7 8 20. 0 :Z — Zwhereo(n)=n+1
"\2 35146 87
21. 0 :Z —> Zwhereo(n)=n+2 22, 0 :7Z —> Zwhereo(n)=n—73

In Exercises 23 through 25, express the permutation of {1, 2, 3, 4, 5, 6, 7, 8} as a product of disjoint cycles, and
then as a product of transpositions.

1 8 12345678
23-(3 1) 24'(36418257
1 8
s, ! )

26. Figure 8.26 shows a Cayley digraph for the alternating group A4 using the generating set S = {(1,2,3),
(1,2)(3,4)}. Continue labeling the other nine vertices with the elements of A4, expressed as a product of
disjoint cycles.

WK NN

3
6
3
2

N A
AN 2

45
37
45
8 4

Concepts

In Exercises 27 through 29, correct the definition of the italicized term without reference to the text, if correction

is needed, so that it is in a form acceptable for publication.

27. For a permutation o of a set A, an orbit of o is a nonempty minimal subset of A that is mapped onto itself
byo.

28. The left regular representation of a group G is the map of G into Sg whose value at g € G is the permutation
of G that carries each x € G into gx.

29. The alternating group is the group of all even permutations.
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30.

31

32.
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(1,2)3,4)

Before the proof of Cayley’s Theorem, it is shown that A, is one-to-one. In the proof, one-to-one is shown
again. Is it necessary to show one-to-one twice? Explain.

Determine whether each of the following is true or false.

a. Every permutation is a cycle.

b. Every cycle is a permutation.

¢. The definition of even and odd permutations could have been given equally well before Theorem 8.19.
d. Every nontrivial subgroup H of S¢ containing some odd permutation contains a transposition.

e. As has 120 elements.

f. S, is not cyclic for any n > 1.

g. A3 is a commutative group.

h. $7 is isomorphic to the subgroup of all those elements of Sg that leave the number 8 fixed.

i. S7 is isomorphic to the subgroup of all those elements of Sg that leave the number 5 fixed.

j- The odd permutations in Sg form a subgroup of Sg.

k. Every group G is isomorphic with a subgroup of Sg.

The dihedral group is defined to be permutations with certain properties. Use the usual notation involving p
and p for elements in Dy,

a. Identify which elements in D3 are even. Do the even elements form a cyclic group?

b. Identify which of elements of Dy are even. Do the even elements form a cyclic group?
¢. For which values of n do the even permutations of D, form a cyclic group?

Proof Synopsis

33. Give a two-sentence synopsis of the proof of Cayley’s Theorem.

34. Give a two-sentence synopsis of the proof of Theorem 8.19.

Theory

35. Suppose that ¢ : G — G’ is a group homomorphism and a € Kerg. Show that for any g € G, gag~! € Kerg.
36. Prove that a homomorphism ¢ : G — G’ is one-to-one if and only if Ker(¢) is the trivial subgroup of G.

37. Let ¢ : G — G’ be a group homomorphism. Show that ¢(a) = ¢(b) if and only if a~'b € Kerg.

38.

Use Exercise 37 to prove that if ¢ : G — G’ is a group homomorphism mapping onto G’ and G is a finite
group, then for any b,c € G/, [¢~'[{b}]] = |¢~'[{c}]|. Conclude that if |G| is a prime number, then either ¢ is
an isomorphism or else G is the trivial group.
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40.
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50.
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52,
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Show thatif ¢ : G - G’ and y : G’ — G” are group homomorphisms, then y o ¢ : G — G” is also a group

homomorphism.

Let ¢ : G — G’ be a group homomorphism. Show that ¢[G] is abelian if and only if xyx~'y~! € Ker(¢) for

allx,y € G.

Prove the following about S, if n > 3.

a. Every permutation in S, can be written as a product of at most n — 1 transpositions.

b. Every permutation in S, that is not a cycle can be written as a product of at most n — 2 transpositions.

¢. Every odd permutation in S, can be written as a product of 2n + 3 transpositions, and every even permuta-
tion as a product of 2n + 8 transpositions.

a. Draw a figure like Fig. 8.20 to illustrate that if i and j are in different orbits of o and o'(i) = i, then the
number of orbits of (i,j)o is one less than the number of orbits of 0.

b. Repeat part (a) if o' (j) = j also.

Show that for every subgroup H of S, for n > 2, either all the permutations in H are even or exactly half of
them are even.

Let o be a permutation of a set A. We shall say “o moves a € A” if (a) # a. If A is a finite set, how many
elements are moved by a cycle o € Sy of length n?

Let A be an infinite set. Let H be the set of all o € S4 such that the number of elements moved by o (see
Exercise 44) is finite. Show that H is a subgroup of Ss.

Let A be an infinite set. Let K be the set of all 0 € S4 that move (see Exercise 44) at most 50 elements of A. Is
K a subgroup of S4? Why?

Consider S, for a fixed n > 2 and let o be a fixed odd permutation. Show that every odd permutation in S, is
a product of o and some permutation in Aj,.

Show that if o is a cycle of odd length, then o is a cycle.
Following the line of thought opened by Exercise 48, complete the following with a condition involving n and
r so that the resulting statement is a theorem:

If o is a cycle of length n, then o” is also a cycle if and only if . . .

Show that S, is generated by {(1,2),(1,2,3,--- ,n)}. [Hint: Show that as r varies, (1,2,3,---,n)"(1,2)
(1,2,3,--- ,n)"" gives all the transpositions (1,2),(2,3),(3,4),---,(n — 1,n),(n,1). Then show that any
transposition is a product of some of these transpositions and use Theorem 8.15.]

Leto € S, and define a relation on {1,2,3,...,n} by i ~ j if and only if j = o*(i) for some k € Z.

1. Prove that ~ is an equivalence relation.
2. Prove that for any 1 < i < n, the equivalence class of i is the orbit of i.

The usual definition for the determinant of an 7 x n matrix A = (a;;) is

det(4) = Z sgn(0)a1,0(1)a2,0(2)3,6(3) * * * An,a(n)
€S,

where sgn(o) is the sign of . Using this definition, prove the following properties of determinants.
a. If a row of matrix A has all zero entries, then det(A) = 0.
b. If two different rows of A are switched to obtain B, then det(B) = — det(A).
c. If r times one row of A is added to another row of A to obtain a matrix B, then det(A) = det(B)
d. If a row of A is multiplied by r to obtain the matrix B, then det(B) = rdet(A).
Prove that any finite group G is isomorphic with a subgroup of GL(n, R) for some n. [Hint: For each o € S,
find a matrix in GL(n, R) that sends each basis vector e; to e4;). Use this to show that S, is isomorphic with a
subgroup of GL(n, R).]
Prove Cayley’s Theorem using the right regular representation rather than the left regular representation.

Let o € S,. An inversion is a pair (i, j) such that i < j and o(i) > o (j). Prove Theorem 8.19 by showing that
multiplying a permutation by a transposition changes the number of inversions by an odd number.
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56. The sixteen puzzle consists of 15 tiles numbered 1 through 15 arranged in a four-by-four grid with one
position left blank. A move is sliding a tile adjacent to the blank position into the blank position. The goal is to
arrange the numbers in order by a sequence of moves. Is it possible to start with the configuration pictured in
Figure 8.27(a) and solve the puzzle as indicated in Figure 8.27(b)? Prove your answer by finding a sequence
of moves to solve the puzzle or by proving that it is impossible to solve.

SECTION 9

9.1 Definition

2 3 1 2 3
516 |7 516 (78
10 |11 | 12 9 10 | 11 |12
13 |15 | 14 13 |14 | 15
a, b.
8.27 Figure

FINITELY GENERATED ABELIAN GROUPS
Direct Products

Let us take a moment to review our present stockpile of groups. Starting with finite
groups, we have the cyclic group Z,, the symmetric group S,, and the alternating group
A, for each positive integer n. We also have the dihedral groups D, and the Klein
4-group V. Of course we know that subgroups of these groups exist. Turning to infi-
nite groups, we have groups consisting of sets of numbers under the usual addition or
multiplication, as, for example, Z, R, and C under addition, and their nonzero elements
under multiplication. We have the group U of complex numbers of magnitude 1 under
multiplication, which is isomorphic to each of the groups R, under addition modulo c,
where ¢ € R*. We also have the group S, of all permutations of an infinite set A, as well
as various groups formed from matrices such as GL(n, R).

One purpose of this section is to show a way to use known groups as building
blocks to form more groups. The Klein 4-group will be recovered in this way from the
cyclic groups. Employing this procedure with the cyclic groups gives us a large class
of abelian groups that can be shown to include all possible structure types for a finite
abelian group. We start by generalizing Definition 0.4.

The Cartesian product of sets By,B,,---,B, is the set of all ordered n-tuples
(b1,ba,- -+ ,b,), where b; € B; for i =1,2,--- ,n. The Cartesian product is denoted
by either

By xBy x ---x B,
or by

n
[15-
i=1

We could also define the Cartesian product of an infinite number of sets, but the
definition is considerably more sophisticated and we shall not need it.

Now let Gy, Gy, - ,G, be groups, and let us use multiplicative notation for all
the group operations. Regarding the G; as sets, we can form [];_, G;. Let us show that
we can make [, G; into a group by means of a binary operation of multiplication by
components. Note again that we are being sloppy when we use the same notation for a
group as for the set of elements of the group.
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Let G1,Ga,--- ,Gy, be groups. For (aj,az,--- ,a,) and (by,bs,--- ,b,) in []._, Gy,
define (aj,as,--- ,a,)(b1,by,--- ,b,) to be the element (a,by,axb,,- - ,a,b,). Then
[Ti-, Gi is a group, the direct product of the groups G;, under this binary operation.

Note that since a; € G;, b; € G, and G; is a group, we have a;b; € G;. Thus the definition
of the binary operation on []_; G; given in the statement of the theorem makes sense;
that is, [T, G; is closed under the binary operation.

The associative law in []7_, G; is thrown back onto the associative law in each
component as follows:

(@r,az,- - ,an)l(b1, b2, - - ,by)(c1,€2, - -+ 5 Cn)]
= (a1, a2, - ,an)(b1c1,b2¢2, - - - , bucn)
= (a1(b1c1), ax(bacz), - - -, an(bncn))
= ((a1b1)c1, (@2br)cz, - - -, (@nbn)Cn)
= (a1b1,a2b3, - - - ,anbn)(c1, €2, -+ , Cn)
= [(a1,a2,- -+ ,an)(b1, b2, - - - ,bn)l(C1, €2, -+ s Cn)-

If ¢; is the identity element in G;, then clearly, with multiplication by components,

(e1, €2, ,€,) is an identity in []i_, G;. Finally, an inverse of (ay,as,--- ,a,) is
(al_',az_ L. ,a;!); compute the product by components. Hence - G: is a group.
L 4

In the event that the operation of each G; is commutative, we sometimes use addi-
tive notation in []}_; G; and refer to [];_, G; as the direct sum of the groups G;. The
notation @7_; G; is sometimes used in this case in place of []_; G;, especially with
abelian groups with operation +. The direct sum of abelian groups Gy, G, - - - , G, may
be written G; @ G, @ - - - @ G,. We leave to Exercise 46 the proof that a direct product
of abelian groups is again abelian.

It is quickly seen that if B; has r; elements for i =1,--- ,n, then []__, B; has
riry - - - ry elements, for in an n-tuple, there are r; choices for the first component from
By, and for each of these there are r» choices for the next component from B>, and so on.

Consider the group Z, x Zs, which has 2 - 3 = 6 elements, namely (0, 0), (0, 1), (0, 2),
(1, 0), (1, 1), and (1, 2). We claim that Z, x Z; is cyclic. It is only necessary to find a
generator. Let us try (1, 1). Here the operations in Z, and Z; are written additively, so
we do the same in the direct product Z, x Zs.

(1,1)=(1,1)
LD =1,D+(1,1)=(0,2)
33,D)=>0,D)+A, D+ 1,1)=(1,0)
41,D)=3,)+1,1D)=(1,0+(1,1)=(0,1)
51, 1)=41,D+ 1, 1D=01D+1,1)=(,2)
6(1,1)=51,H+1,1)=(1,2)+(1,1) = (0,0

Thus (1, 1) generates all of Z, x Zs. Since there is, up to isomorphism, only one cyclic
group structure of a given order, we see that Z, x Zj is isomorphic to Zs. A

Consider Z3 x Zs. This is a group of nine elements. We claim that Z3 x Zs is not cyclic.
Since the addition is by components, and since in Z3 every element added to itself three
times gives the identity, the same is true in Z3 x Zs. Thus no element can generate the
group, for a generator added to itself successively could only give the identity after nine
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Structure of Groups

summands. We have found another group structure of order 9. A similar argument shows
that Z, x Z, is not cyclic. Thus Z, x Z, must be isomorphic to the Klein 4-group. A

The preceding examples illustrate the following theorem:

The group Z,, x Z, is cyclic and is isomorphic to Z,,, if and only if m and n are rela-
tively prime, that is, the gcd of m and n is 1.

Consider the cyclic subgroup of Z,, x Z, generated by (1, 1) as described by Theorem
5.19. As our previous work has shown, the order of this cyclic subgroup is the smallest
power of (1, 1) that gives the identity (0, 0). Here taking a power of (1, 1) in our additive
notation will involve adding (1, 1) to itself repeatedly. Under addition by components,
the first component 1 € Z,, yields 0 only after m summands, 2m summands, and so on,
and the second component 1 € Z, yields 0 only after » summands, 2n summands, and
so on. For them to yield 0 simultaneously, the number of summands must be a multiple
of both m and n. The smallest number that is a multiple of both m and n will be mn
if and only if the gcd of m and n is 1; in this case, (1, 1) generates a cyclic subgroup of
order mn, which is the order of the whole group. This shows that Z,, x Z, is cyclic of
order mn, and hence isomorphic to Z,,, if m and n are relatively prime.

For the converse, suppose that the gcd of m and n is d > 1. Then mn/d is divisible
by both m and n. Consequently, for any (r, s) in Z,, x Z,, we have

r8)+(r,s)+---+(r,5) = (0,0).

mn/d summands

Hence no element (r, s) in Z,, x Z, can generate the entire group, so Z,, X Z, is
not cyclic and therefore not isomorphic to Z,,. *

This theorem can be extended to a product of more than two factors by similar
arguments. We state this as a corollary without going through the details of the proof.

The group [T7_, Zn, is cyclic and isomorphic t0 Z,m,...m, if and only if the numbers m;
fori=1,--- ,n are such that the gcd of any two of them is 1.

The preceding corollary shows that if » is written as a product of powers of distinct
prime numbers, as in

n=@)"@E)"- - @),
then Z, is isomorphic to
Zipyr X Ly X+ -+ X L,y
In particular, Zy, is isomorphic to Zg x Zg. A

We remark that changing the order of the factors in a direct product yields a group
isomorphic to the original one. The names of elements have simply been changed via a
permutation of the components in the n-tuples.

Exercise 57 of Section 6 asked you to define the least common multiple of two
positive integers r and s as a generator of a certain cyclic group. It is straightforward to
prove that the subset of Z consisting of all integers that are multiples of both r and s is
a subgroup of Z, and hence is a cyclic group. Likewise, the set of all common multiples
of n positive integers ry, r2, - - - , ,, is a subgroup of Z, and hence is cyclic.

Let ry,ra,- - -, ry be positive integers. Their least common multiple (abbreviated lcm)
is the positive generator of the cyclic group of all common multiples of the r;, that is,
the cyclic group of all integers divisible by each r; fori = 1,2,--- ,n. ||
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From Definition 9.8 and our work on cyclic groups, we see that the lem of
ri,ry,- -+ ,r, is the smallest positive integer that is a multiple of each r; for i =
1,2,---,n, hence the name least common multiple.

Let (a1,a2,--- ,an) € [[1o, Gi. If a; is of finite order r; in G, then the order of
(ai,az,- -+ ,ay)in ]_[,'-'=1 G; is equal to the least common multiple of all the r;.

This follows by a repetition of the argument used in the proof of Theorem 9.5. For a
power of (aj,az,--- ,ay,) to give (ey, ez, - - ,e,), the power must simultaneously be a
multiple of r; so that this power of the first component a; will yield e,, a multiple of r,,
so that this power of the second component a, will yield e, and so on. L 4

Find the order of (8, 4, 10) in the group Z;» X Zey X Zos.

Since the gcd of 8 and 12 is 4, we see that 8 is of order % =3 in Zj. (See
Theorem 6.15.) Similarly, we find that 4 is of order 15 in Zg and 10 is of order
12 in Zy4. The lIcm of 3, 15, and 12 is 3 - 5 - 4 = 60, so (8, 4, 10) is of order 60 in the
group Ziz X Zep X Zoa. A

The group Z x Z, is generated by the elements (1, 0) and (0, 1). More generally, the
direct product of n cyclic groups, each of which is either Z or Z,, for some positive
integer m, is generated by the n n-tuples

,0,0,---,0), (0,1,0,---,0), (0,0,1,---,0), ---, (0,0,0,---,1).

Such a direct product might also be generated by fewer elements. For example, Z3 x
Z4 x Zs3s is generated by the single element (1, 1, 1). A

Note that if [T, G; is the direct product of groups G;, then the subset
Gi={(e1, €2, i1, a1, €41, - ,€0) |G € Gy},

that is, the set of all n-tuples with the identity elemenls in all places but the ith, is a
subgroup of [T:_, G;. It is also clear that this subgroup G; is naturally isomorphic to G;;
just rename

(e1,€2,- - ,€i_1,ai, €iy1,* -+ ,€n) by a;.

The group G; is mirrored in the ith component of the elements of G;, and the ¢; in
the other components just ride along. We consider i1 Gi to be the internal direct
product of these subgroups G;. The direct product given by Theorem 9.2 is called the
external direct product of the groups G;. The terms internal and external, as applied to a
direct product of groups, just reflect whether or not (respectively) we are regarding the
component groups as subgroups of the product group. We shall usually omit the words
external and internal and just say direct product. Which term we mean will be clear
from the context.

The Structure of Finitely Generated Abelian Groups

Some theorems of abstract algebra are easy to understand and use, although their proofs
may be quite technical and time-consuming to present. This is one section in the text
where we explain the meaning and significance of a theorem but omit its proof. The
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m HISTORICAL NOTE

n his Disquisitiones Arithmeticae, Carl Gauss

demonstrated various results in what is today the
theory of abelian groups in the context of num-
ber theory. Not only did he deal extensively with
equivalence classes of quadratic forms, but he also
considered residue classes modulo a given integer.
Although he noted that results in these two areas
were similar, he did not attempt to develop an ab-
stract theory of abelian groups.

In the 1840s, Ernst Kummer in dealing with
ideal complex numbers noted that his results were
in many respects analogous to those of Gauss.
(See the Historical Note in Section 30.) But it
was Kummer’s student Leopold Kronecker (see the
Historical Note in Section 39) who finally realized
that an abstract theory could be developed out of

the analogies. As he wrote in 1870, “these princi-
ples [from the work of Gauss and Kummer] be-
long to a more general, abstract realm of ideas.
It is therefore appropriate to free their develop-
ment from all unimportant restrictions, so that one
can spare oneself from the necessity of repeat-
ing the same argument in different cases. This
advantage already appears in the development it-
self, and the presentation gains in simplicity, if
it is given in the most general admissible man-
ner, since the most important features stand out
with clarity.” Kronecker then proceeded to de-
velop the basic principles of the theory of finite
abelian groups and was able to state and prove
a version of Theorem 9.12 restricted to finite
groups.

meaning of any theorem whose proof we omit is well within our understanding, and
we feel we should be acquainted with it. It would be impossible for us to meet some of
these fascinating facts in a one-semester course if we were to insist on wading through
complete proofs of all theorems. The theorem that we now state gives us complete
structural information about many abelian groups, in particular, about all finite abelian

where the p; are primes, not necessarily distinct, and the r; are positive integers.
The direct product is unique except for possible rearrangement of the factors; that is,
the number (Betti number of G) of factors Z is unique and the prime powers (p;)" are

(Primary Factor Version of the Fundamental Theorem of Finitely Generated
Abelian Groups) Every finitely generated abelian group G is isomorphic to a direct

Find all abelian groups, up to isomorphism, of order 360. The phrase up to isomorphism
signifies that any abelian group of order 360 should be structurally identical (isomor-

groups.

9.12 Theorem
product of cyclic groups in the form

Zipyyr X Lpyyz X+ X Lipyn X LXL X -+ X L,
unique.
Proof The proof is omitted here.

9.13 Example

phic) to one of the groups of order 360 exhibited.
Solution

We make use of Theorem 9.12. Since our groups are to be of the finite order 360, no

factors Z will appear in the direct product shown in the statement of the theorem.
First we express 360 as a product of prime powers 23325, Then using Theorem 9.12,

we get as possibilities

1. ZzXZzXZ2XZ3XZj;XZ5
2. ZzXZzXZ2X29XZ5
3. ZzXZ4XZ3XZ3XZ5
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4. ZzXZ4XZgXZ5
5. ZgXZ3XZ;XZ§
6. ZgXZgXZ5

Thus there are six different abelian groups (up to isomorphism) of order 360. A
There is another version of the Fundamental Theorem of Finitely Generated Abelian
Groups. Each version can be proven from the other, so technically, if one version is
used to prove something, the other version could also be used. However, it is sometimes
more convenient to use one version rather than the other for a particular problem.

(Invariant Factor Version of the Fundamental Theorem of Finitely Generated
Abelian Groups) Every finitely generated abelian group is isomorphic to a direct
product of cyclic groups of the form

Zgy X Lgy X Lgy X +++ X Lg X L XL X -+ X L,

where each of the d; > 2 is an integer and d; divides d;; for 1 < i < k — 1. Furthermore,
the representation is unique. ¢

The Betti number of a group is the number of factors of Z in both Theorem 9.12
and 9.14. The numbers d; are called the invariant factors or the torsion coefficients.
Theorem 9.12 implies Theorem 9.14 and the other way around. Here we show with an
example how to start with a finite group that is in the form specified in Theorem 9.12
and find its representation in the form of Theorem 9.14.

Let us find the invariant factor form of the abelian group G = Z; x Zy x Z4 x Zg X
Z3 x Zg x Z7, which is in primary factor form. We make a table, one row for each
prime number involved in G: 2, 3, and 7. We list the powers of each prime in the primary
factor form starting with the highest power to the lowest power, filling the ends of the
short rows with 1 = p°. Table 9.16 is the table for G. The group G is the direct product
of cyclic groups of the orders listed in the table. The products of the entries in the
columns give the invariant factors. For G, the invariant factors are d4 = 8 -9 - 7 = 504,
d3=4-3-1=12,dy=2-1-1=2,and dy =2-1-1=2. The construction of the
table insures that d; divides d,, d, divides d3, d3 divides d,, and G is isomorphic with
Zdl XZd2XZdJXZd4=22XZ2XZuXZ504. A

Example 9.15 shows how to create a table from a finitely generated abelian group that is
in primary factor form. From the table we can find the invariant form of the group. This
process can easily be reversed by factoring the invariants to find the primary factors.

Applications

Because of Theorems 9.12 and 9.14, there is a plethora of theorems regarding finitely
generated abelian groups that are fairly easily proven. We present a few examples.

A group G is decomposable if it is isomorphic to a direct product of two proper non-
trivial subgroups. Otherwise G is indecomposable. ]

The finite indecomposable abelian groups are exactly the cyclic groups with order a
power of a prime.

Let G be a finite indecomposable abelian group. Then by Theorem 9.12, G is isomorphic
to a direct product of cyclic groups of prime power order. Since G is indecomposable,
this direct product must consist of just one cyclic group whose order is a power of a
prime number.
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9.19 Theorem
Proof

9.20 Theorem

Proof

Structure of Groups

Conversely, let p be a prime. Then Z,- is indecomposable, for if Z,- were isomor-
phic to Z,: x Z,i, where i+ j = r, then every element would have an order at most
praed < pr *

If m divides the order of a finite abelian group G, then G has a subgroup of order m.
By Theorem 9.12, we can think of G as being
Zpyr X Lapyyz X -+ X Lp,yns

where not all primes p; need be distinct. Since (p1)" (p2)™ - - - (p,)™ is the order of G,
then m must be of the form (p;)* (p2)* - - - (p,)*™, where O < s; < r;. By Theorem 6.15,
(pi)"~* generates a cyclic subgroup of Z,,: of order equal to the quotient of (p;)" by
the ged of (p;)" and (p;)""~*. But the ged of (p;)" and (p;)" ™% is (p;)""~%. Thus (p;)" ™%
generates a cyclic subgroup of Z,y: of order
(@)™ 1/ )" "] = ()™
Recalling that (a) denotes the cyclic subgroup generated by a, we see that
(P ™) x {(P2)™7%) x -+ X ()™
is the required subgroup of order m. *

If m is a square-free integer, that is, m is not divisible by the square of any integer n > 2
then every abelian group of order m is cyclic.

Let G be a finite abelian group of square-free order m. Then by Theorem 9.14, G is
isomorphic to

Zdl XZde"'XZdln

where each d; > 2 divides d;4; for 1 <i <k—1.The orderof Gism =d, - d - - - dy.
If k > 2, then df divides m, which is a contradiction. Thus k = 1 and G is cyclic. *

m EXERCISES 9

Computations

1. List the elements of Zy x Z4. Find the order of each of the elements. Is this group cyclic?

2. Repeat Exercise 1 for the group Z3 x Zjs.

In Exercises 3 through 7, find the order of the given element of the direct product.
(2’ 6) in Z4 X Zl2 4, (3, 4) in ZZI X Zl2 5. (40, 12) in Z45 X le

3.
6.
8.
9.
10.
11.
12.
13.

14.

(3,10,9)in Z4 x

Z12 x Zys 7. (3,6,12,16) in Zg X Z13 X Zoo X Zoa

‘What is the largest order among the orders of all the cyclic subgroups of Zg x Zg? of Z1p X Z;5?

Find all proper nontrivial subgroups of Z» x Zj.

Find all proper nontrivial subgroups of Z» x Z» x Z,.
Find all subgroups of Z, x Z4 of order 4.
Find all subgroups of Z, x Zj x Z4 that are isomorphic to the Klein 4-group.

Disregarding the order of the factors, write direct products of two or more groups of the form Z, so that the

resulting product
Fill in the blanks.

is isomorphic to Zgp in as many ways as possible.

a. The cyclic subgroup of Z,4 generated by 18 has order__.
b. Z3 x Z4 is of order—.
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¢. The element (4, 2) of Z15 x Zg has order___.
d. The Klein 4-group is isomorphicto Z___ x Z__.
€. Zy x Z x Z4 has__elements of finite order.
15. Find the maximum possible order for some element of Z4 x Zg.
16. Are the groups Z; x Z;, and Z4 x Zg isomorphic? Why or why not?
17. Find the maximum possible order for some element of Zg x Zjg X Z4.
18. Are the groups Zg x Z1o X Zya and Z4 x Z12 x Zao isomorphic? Why or why not?
19. Find the maximum possible order for some element of Z4 x Z1g x Z1s.
20. Are the groups Zs X Zig X Zys and Z3 X Z3e X Zjo isomorphic? Why or why not?
In Exercises 21 through 25, proceed as in Example 9.13 to find all abelian groups, up to isomorphism, of the

given order. For each group, find the invariant factors and find an isomorphic group of the form indicated in
Theorem 9.14.

21. Order 8 22. Order 16 23. Order 32
24. Order 720 25. Order 1089

26. How many abelian groups (up to isomorphism) are there of order 247 of order 25? of order (24)(25)?

27. Following the idea suggested in Exercise 26, let m and n be relatively prime positive integers. Show that if
there are (up to isomorphism) r abelian groups of order m and s of order n, then there are (up to isomorphism)
rs abelian groups of order mn.

28. Use Exercise 27 to determine the number of abelian groups (up to isomorphism) of order (10)°.

29, a. Letp be a prime number. Fill in the second row of the table to give the number of abelian groups of order p”,
up to isomorphism.

numberofgroups | | | | | | | |

b. Let p, g, and r be distinct prime numbers. Use the table you created to find the number of abelian groups,
up to isomorphism, of the given order.
i pigtr il (gr)’ iii. ¢r'¢
30. Indicate schematically a Cayley digraph for Z,, x Z, for the generating set S = {(1, 0), (0, 1)}.

31. Consider Cayley digraphs with two arc types, a solid one with an arrow and a dashed one with no arrow, and
consisting of two regular n-gons, for n > 3, with solid arc sides, one inside the other, with dashed arcs joining
the vertices of the outer n-gon to the inner one. Figure 7.11(b) shows such a Cayley digraph with n = 3,
and Figure 7.13(b) shows one with n = 4. The arrows on the outer n-gon may have the same (clockwise or
counterclockwise) direction as those on the inner n-gon, or they may have the opposite direction. Let G be a
group with such a Cayley digraph.
a. Under what circumstances will G be abelian?
b. If G is abelian, to what familiar group is it isomorphic?
¢. If G is abelian, under what circumstances is it cyclic?
d. If G is not abelian, to what group we have discussed is it isomorphic?

Concepts
32. Determine whether each of the following is true or false.
a. If G| and G; are any groups, then G; x G is always isomorphic to G x Gj.
b. Computation in an external direct product of groups is easy if you know how to compute in each component
group.
¢. Groups of finite order must be used to form an external direct product.
d. A group of prime order could not be the internal direct product of two proper nontrivial subgroups.
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33.

34,

3s.

36.

37.

38.

39.

PartII  Structure of Groups

€. Zy X Z4 is isomorphic to Zg.

f. Zy x Zj4 is isomorphic to Sg.

g. Z3 x Zg is isomorphic to S4.

h. Every element in Z4 x Zg has order 8.

i. The order of Zjp x Z;s is 60.

jo Zm x Zy has mn elements whether m and n are relatively prime or not.

Give an example illustrating that not every nontrivial abelian group is the internal direct product of two proper
nontrivial subgroups.

a. How many subgroups of Zs x Zg are isomorphic to Zs x Zg?

b. How many subgroups of Z x Z are isomorphic to Z x Z?

Give an example of a nontrivial group that is not of prime order and is not the internal direct product of two
nontrivial subgroups.

Determine whether each of the following is true or false.

a. Every abelian group of prime order is cyclic.

b. Every abelian group of prime power order is cyclic.

¢. Zg is generated by {4, 6}.
d. Zg is generated by {4, 5, 6}.

e. All finite abelian groups are classified up to isomorphism by Theorem 9.12.

f. Any two finitely generated abelian groups with the same Betti number are isomorphic.
g. Every abelian group of order divisible by 5 contains a cyclic subgroup of order 5.
h. Every abelian group of order divisible by 4 contains a cyclic subgroup of order 4.

i. Every abelian group of order divisible by 6 contains a cyclic subgroup of order 6.

j- Every finite abelian group has a Betti number of 0.
Let p and g be distinct prime numbers. How does the number (up to isomorphism) of abelian groups of order p”
compare with the number (up to isomorphism) of abelian groups of order g"?
Let G be an abelian group of order 72.

a. Can you say how many subgroups of order 8 G has? Why, or why not?
b. Can you say how many subgroups of order 4 G has? Why, or why not?

Let G be an abelian group. Show that the elements of finite order in G form a subgroup. This subgroup is
called the torsion subgroup of G.

Exercises 40 through 43 deal with the concept of the torsion subgroup just defined.

40.
41.
42,
43,

Find the order of the torsion subgroup of Z4 x Z x Z3; of Z12 X Z X Z3.
Find the torsion subgroup of the multiplicative group R* of nonzero real numbers.
Find the torsion subgroup T of the multiplicative group C* of nonzero complex numbers.

An abelian group is torsion free if e is the only element of finite order. Use Theorem 9.12 to show that every
finitely generated abelian group is the internal direct product of its torsion subgroup and of a torsion-free
subgroup. (Note that {¢} may be the torsion subgroup, and is also torsion free.)

44. Find the torsion coefficients for each of the following groups.

a.ng23xZ4 C.Zg)(ZZXZ49XZ7

b. Zy x Z4 x Zg X Z3 X ZLy7 d. Zp X Za X Zp x Z3 x Z3 x L9 X Zs
Proof Synopsis

45,

Give a two-sentence synopsis of the proof of Theorem 9.5.
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Theory
46. Prove that a direct product of abelian groups is abelian.

47. Let G be an abelian group. Let H be the subset of G consisting of the identity e together with all elements of
G of order 2. Show that H is a subgroup of G.

48. Following up the idea of Exercise 47 determine whether H will always be a subgroup for every abelian group
G if H consists of the identity e together with all elements of G of order 3; of order 4. For what positive
integers n will H always be a subgroup for every abelian group G, if H consists of the identity e together with
all elements of G of order n? Compare with Exercise 54 of Section 5.

49. Find a counterexample of Exercise 47 with the hypothesis that G is abelian omitted.
Let H and K be subgroups of a group G. Exercises 50 and 51 ask you to establish necessary and sufficient criteria
for G to appear as the internal direct product of H and K.

50. Let H and K be groups and let G = H x K. Recall that both H and K appear as subgroups of G in a natural
way. Show that these subgroups H (actually H x {e}) and K (actually {e¢} x K) have the following properties.

a. Every element of G is of the form hk for some h € H and k € K.
b. hk = khforallh € Hand k € K. c. HNK = {e}.

51. Let H and K be subgroups of a group G satisfying the three properties listed in the preceding exercise. Show
that for each g € G, the expression g = hk for h € H and k € K is unique. Then let each g be renamed (A, k).
Show that, under this renaming, G becomes structurally identical (isomorphic) to H x K.

52. Show that a finite abelian group is not cyclic if and only if it contains a subgroup isomorphic to Z, x Z, for
some prime p.

53. Prove that if a finite abelian group has order a power of a prime p, then the order of every element in the group
is a power of p.

54. Let G, H, and K be finitely generated abelian groups. Show that if G x K is isomorphic to H x K, then G >~ H.

55. Using the notation of Theorem 9.14, prove that for any finite abelian group G, every cyclic subgroup of G has
order no more than dy, the largest invariant factor for G.

SECTION 10 COSETS AND THE THEOREM OF LAGRANGE

You may have noticed that the order of a subgroup H of a finite group G seems always
to be a divisor of the order of G. This is the theorem of Lagrange. We shall prove it by
exhibiting a partition of G into cells, all having the same size as H. Thus if there are r
such cells, we will have

r(order of H) = (order of G)

from which the theorem follows immediately. The cells in the partition will be called
cosets of H, and they are important in their own right. In Section 12, we will see that if
H satisfies a certain property, then each coset can be regarded as an element of a group
in a very natural way. We give some indication of such coset groups in this section to
help you develop a feel for the topic.
Cosets
Let H be a subgroup of a group G, which may be of finite or infinite order. We exhibit a
pattition a G by defining an equivalence relation, ~; on G.

10.1 Theorem Let H be a subgroup of G. Let the relation ~, be defined on G by

a~r. b if and only if a'beH.

Then ~, is an equivalence relation on G.



98 Part II

Structure of Groups

Proof When reading the proof, notice how we must constantly make use of the fact that H is a

10.2 Definition

10.3 Example

Solution

10.4 Example

10.5 Example

subgroup of G.

Reflexive Leta € G.Thena™'a = e and e € H since H is a subgroup. Thus
a~pa.

Symmetric  Supposea ~1 b. Thena~'b € H. Since H is a subgroup, (a~'b) ™!
isin H and (a~'b)"! = b~'a,so b~ 'aisin H and b ~, a.

Transitive Leta~, bandb ~; c. Thena~'b € Hand b~'c € H. Since H is
a subgroup, (a~'b)(b~c) =a~'cisin H,soa ~ c. *

The equivalence relation ~, in Theorem 10.1 defines a partition of G, as described
in Theorem 0.22. Let’s see what the cells in this partition look like. Suppose a € G. The
cell containing a consists of all x € G such that a ~; x, which means all x € G such
that a~x € H. Now a~lx € H if and only if a—'x = h for some h € H, or equivalently,
if and only if x = ah for some h € H. Therefore the cell containing a is {ah |h € H},
which we denote by aH.

Let H be a subgroup of a group G. The subset aH = {ah | h € H} of G is the left coset
of H containing a. u
Exhibit the left coset of the subgroup 3Z of Z.
Our notation here is additive, so the left coset of 3Z containing m is m 4 3Z. Taking
m = 0, we see that

3Z={---,-9,-6,-3,0,3,6,9,---}

is itself one of its left cosets, the coset containing 0. To find another left coset, we select
an element of Z not in 3Z, say 1, and find the left coset containing it. We have

1+3Z={---,-8,-5,-2,1,4,7,10,-- - }.

These two left cosets, 3Z and 1 + 3Z, do not yet exhaust Z. For example, 2 is in neither
of them. The left coset containing 2 is

24+3Z={---,-7,—4,-1,2,5,8,11,--- }.

It is clear that these three left cosets we have found do exhaust Z, so they constitute the
partition of Z into left cosets of 3Z. A

We find the partition of Z,, into left cosets of H = (3). One coset is always the subgroup
itself, so 0 + H = {0,3,6,9}. We next find 1 + H = {1, 4,7, 10}. We are still not done
since we have not included every element of Z;, in the two cosets we listed so far.
Finally, 2 + H = {2,5, 8, 11} and we have computed all the left cosets of HinZ1,. A

We now list the left cosets of the subgroup H = () = {t, u} of the nonabelian group
Dy = {1, p, P2, 0%, 1, o, 1p?, no%}.

e, u} = {o, p}

plu} = {p,no%)
pHuLu} = (0% no?
pALu} = (0% no}

We know this is a complete list of the left cosets since every element of D4 appears in
exactly one of the listed sets. A
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The Theorem of Lagrange

In Example 10.4 each left coset of (3) < Z;; has four elements. In Example 10.5, each
left coset has two elements. From the computation of the left cosets, it is no surprise that
all left cosets of a subgroup have the same number of elements. Theorem 10.6 confirms
this is what happens in general.

Let H be a subgroup of G. Then for any a € G, the coset aH has the same cardinality
as H.

Let f : H — aH be defined by the formula f(h) = ah. To show f is one-to-one, we
suppose that b, ¢ € H and f(b) = f(c). Then ab = ac and left cancellation gives b = c.
So f is one-to-one. Now suppose that y € aH. Then there is an i € H such that y = ah
by definition of the left coset aH. Thus y = f(h) and f is surjective. Since there is a
one-to-one function mapping H onto aH, H and aH have the same cardinality. L 4

In the case of a finite subgroup H, Theorem 10.6 says that H and aH have the same
number of elements for any a in the group G. This is precisely what we were seeking in
order to prove Lagrange’s Theorem.

(Theorem of Lagrange) Let H be a subgroup of a finite group G. Then the order of
H is a divisor of the order of G.

Let n be the order of G, and let H have order m. Theorem 10.6 shows that every coset of
H also has m elements. Let r be the number of cells in the partition of G into left cosets
of H. Then n = rm, so m is indeed a divisor of n. L

Note that this elegant and important theorem comes from the simple counting of
cosets and the number of elements in each coset. We continue to derive consequences
of Theorem 10.7, which should be regarded as a counting theorem.

Every group of prime order is cyclic.

Let G be of prime order p, and let a be an element of G different from the identity. Then
the cyclic subgroup (a) of G generated by a has at least two elements, a and e. But
by Theorem 10.7, the order m > 2 of (a) must divide the prime p. Thus we must have
m = p and (a) = G, so G is cyclic. *

Since every cyclic group of order p is isomorphic to Z,, we see that there is only
one group structure, up to isomorphism, of a given prime order p. Now doesn’t this
elegant result follow easily from the theorem of Lagrange, a counting theorem? Never
underestimate a theorem that counts something. Proving the preceding corollary is a
favorite examination question.

The order of an element of a finite group divides the order of the group.

Remembering that the order of an element is the same as the order of the cyclic subgroup
generated by the element, we see that this theorem follows directly from Lagrange’s
Theorem. .

Let H be a subgroup of a group G. The number of left cosets of H in G is the index
(G:H)of Hin G. [ ]

The index (G : H) just defined may be finite or infinite. If G is finite, then obviously
(G:H) is finite and (G : H) = |G|/|H|, since every coset of H contains |H| elements.
We state a basic theorem concerning indices of subgroups, and leave the proof to the
exercises (see Exercise 40).
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Structure of Groups

Suppose H and K are subgroups of a group G such that K < H < G, and suppose (H : K)
and (G : H) are both finite. Then (G : K) is finite, and (G : K) = (G: H)(H : K).

Lagrange’s Theorem says that for any subgroup H of a finite group G, the order
of H divides the order of G. But if d is a divisor of the order of G, does G necessarily
have a subgroup with exactly d elements? We will show in Section 13 that the answer is
no for some groups. This suggests a new question: Under what conditions does G have
a subgroup of every order d that is a divisor of G? We saw in Section 9 that for every
divisor of the order of an abelian group, there is a subgroup of that order. The complete
answer to this question is beyond the scope of this book, but we will come back to the
question later.

Cosets Left and Right!

It is possible to do everything we have done in this section using right cosets instead of
left cosets. All it takes is some minor and straightforward modifications to the defini-
tions and proofs. We briefly give the corresponding definitions that lead to right cosets
and point out some of their properties.
Let H be a subgroup of G. To start with, instead of ~; we could have used ~¢
defined by
a~gb ifandonlyif ab~!eH.

With this definition, ~ is an equivalence relation and the equivalence classes are the
right cosets. The right coset of H containing the element a € G is

Ha = {ha|h € H}.

Just like left cosets, each right coset of a subgroup H has the same cardinality as H. So
left cosets and right cosets have the same cardinality. In abelian groups, the right and
left cosets are the same, but there is no reason to think they would be the same in general
for nonabelian groups. If the right and left cosets are the same, we can drop left or right
and just refer to cosets.

In Example 10.5 we computed the left cosets of the subgroup H = (u) = {t, u} of the
group Dy = {i, p, 02, p°, i, up, up2, up’}. We now compute the right cosets.

{eule = {, u}
{,ulo = {p,uo}
{t, u}p? = {0?, up?}
{,ulp® = {0, up’}

The right cosets and the left cosets are not the same. For example, pH = {p, up®} while
Hp = {p, up}. A

If this were the whole story of left and right cosets, there would be no reason to even
mention right cosets. We could just use left coset, prove Lagrange’s Theorem, and call
it a day. However, as we shall see in Part III, a curious thing happens when the left and
right cosets are the same. We illustrate with an example.

The group Zg is abelian. Find the partition of Zg into cosets of the subgroup H = {0, 3}.
One coset is {0, 3} itself. The coset containing 1 is 1 + {0, 3} = {1, 4}. The coset con-

taining 2 is 2 + {0, 3} = {2, 5}. Since {0, 3}, {1, 4}, and {2, 5} exhaust all of Z, these
are all the cosets. A
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We point out a fascinating thing that we will develop in detail in Section 12. Re-
ferring back to Example 10.13, Table 10.14 gives the binary operation for Z¢ but with
elements listed in the order they appear in the cosets {0, 3}, {1, 4}, {2, 5}. We shaded the
table according to these cosets.

10.14 Table 10.15 Table
+|0|3]1]4]2]5
o |o|3|1|4]2]5 LT | MD | DK
3 [3]o|4]1]5]2

LT | LT | MD | DK
1 [1]4]2]5]3]0
4 |41 [5F210]3 MD | MD | DK | LT
2 2153|041
5 |[5/2/0(3|1]4 DK | DK | LT | MD

Suppose we denote these cosets by LT(light), MD(medium), and DK(dark) ac-
cording to their shading. Table 10.14 then defines a binary operation on these shadings,
as shown in Table 10.15. Note that if we replace LT by 0, MD by 1, and DK by 2 in
Table 10.15, we obtain the table for Z;. Thus the table of shadings forms a group!

We will see in Section 12 that when left cosets and right cosets are the same, then
the cosets form a group as in Example 10.13. If right and left cosets are different, the
construction fails.

Let H = {1, u} < D3. The group table for D; is given below with the elements arranged

so that left cosets are together. The double lines divide the cosets.

2

e o |ue®|| 0 | e

t [ o [ue?] p* [ume
w el Juo]e® Jue’] o
o o [uo’ 0® [ue] ¢ [ &
wolup o | ] ¢ [ue]o?
Mot Jue] ¢ [ u] o [uo?
wollup| o® [wo® o || 1| ¢

The situation here is much different from the situation in Example 10.13. In Table 10.14
the two-by-two blocks in the table each contain only elements of a left coset. In the
present example, most blocks do not contain elements from only one left coset. Further-
more, even if we tried to use the two-by-two blocks of elements to form a three-by-three
group table, the second row of blocks contains two blocks, both having the same ele-
ments, {02, 110, i1, 1}. So the table of blocks would have a row with the same element
listed twice. In this case, there is no natural way of making the left cosets a group. A

If G is an abelian group, then the left and right cosets are the same. Theorem 10.17
gives another condition when left and right cosets are the same. Recall that if ¢ : G —
G’ is a group homomorphism, then Ker(¢) = ¢~'[{e}] < G is the kernel of ¢.

Let ¢ : G — G’ be a group homomorphism. Then the left and right cosets of Ker(¢)
are identical. Furthermore, a,b € G are in the same coset of Ker(¢) if and only if
¢(a) = ¢(b).
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‘We first assume that a and b are in the same left cosets of Ker(¢) and show they are also
in the same right cosets. Then a~'b € Ker(¢). So ¢(a~'b) = e, the identity element.
Because ¢ is a homomorphism, ¢(a)~!¢(b) = e, which implies that ¢(a) = ¢(b).
Therefore, ¢p(ab™") = ¢p(a)p(b)~! = ¢p(a)p(a)~! = e. Thus ab~! € Ker(¢), which says
that a and b are in the same right coset. Note that in the process we showed that if a and
b are in the same left coset of Ker(¢), then ¢(a) = ¢(b).

Now suppose that ¢(a) = ¢(b). Then ¢p(b~'a) = ¢p(b) '¢(a) = e. Thus b 'a €
Ker(¢), which implies that a and b are in the same left coset.

To complete the proof, we need to show that if a and b are in the same right coset,
then they are also in the same left coset. The proof is essentially the same as above, so
we leave this detail to the reader. *

Consider the determinant map det : GL(2,R) — R*. In linear algebra you learn that
det(AB) = det(A) det(B), so the determinant is a group homomorphism. The kernel of
det is the set of all 2 x 2 matrices with determinant 1. Two matrices A, B € GL(2,R)
are in the same left coset of Ker(det) if and only if they are in the same right coset of
Ker(det) if and only if det(A) = det(B). In particular, the two matrices

20 d 32
01|22
each have determinant 2, so they are in the same left (and right) cosets of Ker(det). A

A homomorphism ¢ : G — G’ is one-to-one if and only if Ker(¢) is the trivial subgroup
of G.

We first assume that Ker(¢) = {e}. Every coset of Ker(¢) has only one element. Suppose
that ¢(a) = ¢(b). Then a and b are in the same coset of Ker(¢) by Theorem 10.17. Thus
a=hb.

Now suppose that ¢ is one-to-one. Then only the identity e is mapped to the identity
in G'. So Ker(¢) = {e}. *

Corollary 10.19 says that to check if a homomorphism ¢ : G — G’ is one-to-one
one merely needs to check that Ker(¢) is the trivial subgroup. In other words, show
that the only solution to ¢(x) = ¢ is e, where e and ¢’ are the identities in G and G,
respectively.

Let ¢ : R — R* be defined by ¢(x) = 2*. Since ¢ is a homomorphism, we can check
that ¢ is one-to-one by solving ¢(x) = 1. The equation 2* = ¢(x) = 1 has only the
solution 0 since for x > 0, 2* > 1 and for x < 0, 2* < 1. Thus ¢ is one-to-one. A

m EXERCISES 10

Computations

1

N AN A WN

Find all cosets of the subgroup 4Z of Z.

. Find all cosets of the subgroup 4Z of 2Z.
. Find all cosets of the subgroup (3) in Z3.

. Find all cosets of the subgroup (6) in Z3.

. Find all cosets of the subgroup (18) of Zss.
. Find all left cosets of (up) in D4.

. Repeat the preceding exercise, but find the right cosets this time. Are they the same as the left cosets?
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8. Are the left and right cosets the same for the subgroup {t, p*, i, p*} of Dg? If so, display the cosets. If not,
find a left coset that is not the same as any right coset.

9. Find all the left cosets of (p2) < Dj.

10. Repeat the previous exercise, but find the right cosets. Are the left and right cosets the same? If so, make the
group table for Dy, ordering the elements so that the cosets are in blocks, see if the blocks form a group with
four elements, and determine what group of order 4 the blocks form.

11. Find the index of (0?) in the group Ds.

12. Find the index of (3) in the group Z4.

13. Find the index of 12Z in Z.

14. Find the index of 12Z in 3Z.

15. Leto = (1,2,5,4)(2,3) in Ss. Find the index of (o) in Ss.
16. Let u = (1,2,4,5)(3,6) in Se. Find the index of (@) in Se.

Concepts

In Exercises 17 through 19, correct the definition of the italicized term without reference to the text, if correction
is needed, so that it is in a form acceptable for publication.

17. Let G be a group and let H C G. The left coset of H containing a is aH = {ah| h € H}.

18. Let G be a group and let H < G. The index of H in G is the number of right cosets of H in G.

19. Let ¢ : G — G'. Then the kernel of ¢ is Ker(¢) = {g € G| ¢(g) = e}.

20. Determine whether each of the following is true or false.

a. Every subgroup of every group has left cosets.

b. The number of left cosets of a subgroup of a finite group divides the order of the group.
¢. Every group of prime order is abelian.

d. One cannot have left cosets of a finite subgroup of an infinite group.

e. A subgroup of a group is a left coset of itself.

f. Only subgroups of finite groups can have left cosets.

g. Ayisofindex2in S, forn > 1.

h. The theorem of Lagrange is a nice result.

i. Every finite group contains an element of every order that divides the order of the group.
j- Every finite cyclic group contains an element of every order that divides the order of the group.
k. The kernel of a homomorphism is a subgroup of the range of the homomorphism.

1. Left cosets and right cosets of the kernel of a homomorphism are the same.

In Exercises 21 through 26, give an example of the desired subgroup and group if possible. If impossible, say why
it is impossible.

21. A subgroup H < G with G infinite and H having only a finite number of left cosets in G

22. A subgroup of an abelian group G whose left cosets and right cosets give different partitions of G

23. A subgroup of a group G whose left cosets give a partition of G into just one cell

24. A subgroup of a group of order 6 whose left cosets give a partition of the group into 6 cells

25. A subgroup of a group of order 6 whose left cosets give a partition of the group into 12 cells

26. A subgroup of a group of order 6 whose left cosets give a partition of the group into 4 cells

Proof Synopsis

27. Give a one-sentence synopsis of the proof of the Theorem of Lagrange.
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28.
29.

30.

31

Prove that the relation ~ that is used to define right cosets is an equivalence relation.

Let H be a subgroup of a group G and let g € G. Define a one-to-one map of H onto Hg. Prove that your map
is one-to-one and is onto Hg.

Let H be a subgroup of a group G such that g~'hg € H for all g € G and all & € H. Show that every left coset
gH is the same as the right coset Hg.

Let H be a subgroup of a group G. Prove that if the partition of G into left cosets of H is the same as the
partition into right cosets of H, then g~lhg € H for all g € G and all h € H. (Note that this is the converse of
Exercise 30.)

Let H be a subgroup of a group G and let a,b € G. In Exercises 32 through 35 prove the statement or give a

counterexample.

32. If aH = bH, then Ha = Hb.

33. If Ha = Hb, then b € Ha.

34, If aH = bH, then Ha~! = Hb™!.
35, If aH = bH, then a’H = b’H.

36.

37.

38.

39.

41.
42,
43.

45,

Let G be a group of order pg, where p and g are prime numbers. Show that every proper subgroup of G is
cyclic.

Show that there are the same number of left as right cosets of a subgroup H of a group G; that is, exhibit
a one-to-one map of the collection of left cosets onto the collection of right cosets. (Note that this result is
obvious by counting for finite groups. Your proof must hold for any group.)

Exercise 29 of Section 2 showed that every finite group of even order 2n contains an element of order 2.
Using the theorem of Lagrange, show that if » is odd, then an abelian group of order 2n contains precisely one
element of order 2.

Show that a group with at least two elements but with no proper nontrivial subgroups must be finite and of
prime order.

. Prove Theorem 10.11 [Hint: Let {q;H |i = 1,--- ,r} be the collection of distinct left cosets of H in G and

{bjK|j=1,---,s} be the collection of distinct left cosets of K in H. Show that
{@b)K|i=1,---,rj=1,---,s}

is the collection of distinct left cosets of K in G.]

Show that if H is a subgroup of index 2 in a finite group G, then every left coset of H is also a right coset of H.

Show that if a group G with identity e has finite order n, then a” = e forall a € G.

Show that every left coset of the subgroup Z of the additive group of real numbers contains exactly one element
xsuchthat) <x < 1.

. Show that the function sine assigns the same value to each element of any fixed left coset of the subgroup (27)

of the additive group R of real numbers. (Thus sine induces a well-defined function on the set of cosets; the
value of the function on a coset is obtained when we choose an element x of the coset and compute sin x.)

Let H and K be subgroups of a group G. Define ~ on G by a ~ b if and only if a = hbk for some h € H and
some k € K.
a. Prove that ~ is an equivalence relation on G.

b. Describe the elements in the equivalence class containing a € G. (These equivalence classes are called
double cosets.)

. Let S4 be the group of all permutations of the set A, and let ¢ be one particular element of A.

a. Show that {o € S4 | o(c) = c} is a subgroup S; . of S4.

b. Let d # c be another particular element of A. Is Sc g = {0 € Sa | o(c) = d} a subgroup of S4? Why or why
not?

¢. Characterize the set S.4 of part (b) in terms of the subgroup S, of part (a).
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47. Show that a finite cyclic group of order n has exactly one subgroup of each order d dividing n, and that these
are all the subgroups it has.

48. The Euler phi-function is defined for positive integers n by ¢(n) = s, where s is the number of positive
integers less than or equal to » that are relatively prime to n. Use Exercise 47 to show that

n=73 .
d|n
the sum being taken over all positive integers d dividing n. [Hint: Note that the number of generators of Z; is
@(d) by Corollary 6.17.]

49. Let G be a finite group. Show that if for each positive integer m the number of solutions x of the equation
x™ = e in G is at most m, then G is cyclic. [Hint: Use Theorem 10.9 and Exercise 48 to show that G must
contain an element of order n = |G|.]

50. Show that a finite group cannot be written as the union of two of its proper subgroups. Does the statement
remain true if “two” is replaced by “three”? (This was problem B-2 on the 1969 Putnam Exam.)

section 11 TPLANE ISOMETRIES

Consider the Euclidean plane R2. An isometry of R? is a permutation ¢ : R? — R?
that preserves distance, so that the distance between points P and Q is the same as
the distance between the points ¢(P) and ¢(Q) for all points P and Q in R2. If ¢ is
also an isometry of R2, then the distance between ¥ (¢(P)) and ¥ (¢(Q)) must be the
same as the distance between ¢(P) and ¢(Q), which in turn is the distance between P
and Q, showing that the composition of two isometries is again an isometry. Since the
identity map is an isometry and the inverse of an isometry is an isometry, we see that
the isometries of R? form a subgroup of the group of all permutations of R2.

Given any subset S of R2, the isometries of R? that carry S onto itself form a
subgroup of the group of isometries. This subgroup is the group of symmetries of S in
R2. Although we defined the dihedral group D, as one-to-one maps from the vertices
of a regular n-gon onto itself that preserves edges, we can extend each map in D, to an
isometry of the whole plane; y is reflection across the x-axis and p is rotation about the
origin by 27” So we can think of D, as the group of isometries of a regular n-gon in R2.

Everything we have defined in the two preceding paragraphs could equally well
have been done for n-dimensional Euclidean space R”, but we will concern ourselves
chiefly with plane isometries here.

It can be proved that every isometry of the plane is one of just four types (see Artin
[5]). We will list the types and show, for each type, a labeled figure that can be carried
into itself by an isometry of that type. In each of Figs. 11.1, 11.3, and 11.4, consider the
line with spikes shown to be extended infinitely to the left and to the right. We also give
an example of each type in terms of coordinates.

translation t: Slide every point the same distance in the same direction. See
Fig. 11.1. (Example: t(x,y) = (x,y) + (2,-3) = (x+ 2,y — 3).)

rotation p: Rotate the plane about a point P through an angle 6. See Fig. 11.2.
(Example: p(x,y) = (—y,x) is a rotation through 90° counterclockwise about the
origin (0, 0).)

reflection : Map each point into its mirror image (u for mirror) across a line
L, each point of which is left fixed by u. See Fig. 11.3. The line L is the axis of
reflection. (Example: pu(x,y) = (y,x) is a reflection across the line y = x.)

T This section is not used in the remainder of the text.
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glide reflection y: The product of a translation and a reflection across a line
mapped into itself by the translation. See Fig. 11.4. (Example: y(x,y) = (x + 4, —y)
is a glide reflection along the x-axis.)

Notice the little curved arrow that is carried into another curved arrow in each of
Figs. 11.1 through 11.4. For the translation and rotation, the counterclockwise directions
of the curved arrows remain the same, but for the reflection and glide reflection, the
counterclockwise arrow is mapped into a clockwise arrow. We say that translations and
rotations preserve orientation, while the reflection and glide reflection reverse orien-
tation. We do not classify the identity isometry as any definite one of the four types
listed; it could equally well be considered to be a translation by the zero vector or a
rotation about any point through an angle of 0°. We always consider a glide reflection to
be the product of a reflection and a translation that is different from the identity isometry.

7(P)

P
'® / R /(R)

l ol ]

Q) Q Q)
11.1 Figure Translation t. 11.2 Figure Rotation p.
P [ZCO T

s I (\' I I y7(P) y(P)

L
s (/ ¢
s \ o \ %Q) \
w(P) [T (] YUP) P YAP)
11.3 Figure Reflection u. 11.4 Figure Glide reflection y.

The theorem that follows describes the possible structures of finite subgroups of
the full isometry group.

Every finite group G of isometries of the plane is isomorphic to either the Klein 4-group,
Z, for n > 1, or D, for some n > 3.

(Outline) First we show that there is a point in the plane that is fixed by every element
of G. We let G = {¢1, 92,93, ..., o} and (x;, y;) = ¢;(0,0). Then the point

xi+xo+x3+---+ Xy yi+ty1+y3+o-+Ym
m ’ m

P=(f,?)=(

is the center of mass of the set S = {(x;,y;)| 1 < i < m} where each point is weighted
by the number of ¢; that map (0, 0) to that point. It is easy to see that the isometries in G
permute the points in § since for each i and j, ¢; o ¢ = ¢ for some k. Thus ¢;(xj,y;) =
(%, yx)- This implies the center of mass of ¢(S) is the same as the center of mass of S.
It can be shown that given the distances from the center of mass to the points of the set
S, the center of mass is the only point having these distances from the points of S. This
says that (x, ) is fixed by every isometry in G.
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The orientation preserving isometries of G form a subgroup H of G which is either
all of G or else of order m/2. You are asked to prove this in Exercise 22. Of course H
consists of the identity and possibly rotations about the point (%, y). If H has only one
element, then G has one or two elements and is therefore isomorphic with Z; or Z,. If
H has two elements, then G has two or four elements and is therefore isomorphic with
either the Klein 4-group, Z, or Z,. So we can assume that H has at least three elements.

If we choose a rotation p in H that rotates through the smallest positive angle 6
among all the elements of H, p generates H. The proof of this fact is similar to the proof
that a subgroup of a cyclic group is cyclic and you are asked to provide the details of
the proof in Exercise 23. If G = H, then G is isomorphic with Z,,. So we now assume
that G contains a reflection, say u. Then the coset wH contains only isometries of G
that reverse orientation. Each coset H and uH contains half the elements of G, so
G=HUpuH.

Consider now a regular n-gon (recall that we are assuming that n > 3) with center
the point (%, y) and having a vertex v on the line fixed by u. Each element of G per-
mutes the vertices of the n-gon and preserves edges. Furthermore, no two elements of
G permute the vertices in the same way. Thus G is isomorphic with a subgroup of the
dihedral group D,,. Since |G| = |D,|, G is isomorphic with D,,.

In Theorem 11.5 the Klein 4-group, V, seems like an exception. However, V fits
into the family of dihedral groups since V has two elements of order 2, a and b, with the
property that ab = ba~!. Sometimes V is denoted D, and considered a dihedral group.
The isometries of the plane that map a line segment to itself are isomorphic with V.

The preceding theorem gives the complete story about finite plane isometry groups.
‘We turn now to some infinite groups of plane isometries that arise naturally in decorating
and art. Among these are the discrete frieze groups. A discrete frieze consists of a pattern
of finite width and height that is repeated endlessly in both directions along its baseline
to form a strip of infinite length but finite height; think of it as a decorative border strip
that goes around a room next to the ceiling on wallpaper. We consider those isometries
that carry each basic pattern onto itself or onto another instance of the pattern in the
frieze. The set of all such isometries is called the “frieze group.” All discrete frieze
groups are infinite and have a subgroup isomorphic to Z generated by the translation
that slides the frieze lengthwise until the basic pattern is superimposed on the position
of its next neighbor pattern in that direction. As a simple example of a discrete frieze,
consider integral signs spaced equal distances apart and continuing infinitely to the left
and right, indicated schematically like this.

ST

Let us consider the integral signs to be one unit apart. The symmetry group of this frieze
is generated by a translation  sliding the plane one unit to the right, and by a rotation p
of 180° about a point in the center of some integral sign. There are no horizontal or
vertical reflections, and no glide reflections. This frieze group is nonabelian; we can
check that Tp = pt~!. This relation between t and o looks very familiar. The dihedral
group D, is also generated by two elements p and i that satisfy the relation pu = up".
If T and p in the frieze group are replaced by p and u, respectively, we have the same
relation. In D,, p has order 2, as does p in the frieze group, but the element p in D,
has order n while t has infinite order. Thus it is natural to use the notation D, for this
nonabelian frieze group.
As another example, consider the frieze given by an infinite string of D’s.

---DDDDDDDDDDD- -
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Its group is generated by a translation 7 one step to the right and by a vertical reflection
1 across a horizontal line cutting through the middle of all the D’s. We can check that
these group generators commute this time, that is, T4 = ur, so this frieze group is
abelian and is isomorphic to Z x Z,.

It can be shown that if we classify such discrete friezes only by whether or not their
groups contain a

rotation horizontal axis reflection
vertical axis reflection nontrivial glide reflection

then there are a total of seven possibilities. A nontrivial glide reflection in a symmetry
group is one that is not equal to a product of a translation in that group and a reflection
in that group. The group for the string of D’s above contains glide reflections across
the horizontal line through the centers of the D’s, but the translation component of each
glide reflection is also in the group so they are all considered trivial glide reflections in
that group. The frieze group for

--- D D D D D -
... D D D D D ...

contains a nontrivial glide reflection whose translation component is not an element of
the group. The exercises exhibit the seven possible cases, and ask you to tell, for each
case, which of the four types of isometries displayed above appear in the symmetry
group. We do not obtain seven different group structures. Each of the groups obtained
can be shown to be isomorphic to one of

Z, Do, ZxZy, or Dy X Zs.

Equally interesting is the study of symmetries when a pattern in the shape of a
square, parallelogram, rhombus, or hexagon is repeated by translations along two non-
parallel vector directions to fill the entire plane, like patterns that appear on wallpaper.
These groups are called the wallpaper groups or the plane crystallographic groups.
While a frieze could not be carried into itself by a rotation through a positive angle less
than 180°, it is possible to have rotations of 60°, 90°, 120°, and 180° for some of these
plane-filling patterns. Figure 11.6 provides an illustration where the pattern consists of
a square. We are interested in the group of plane isometries that carry this square onto
itself or onto another square. Generators for this group are given by two translations
(one sliding a square to the next neighbor to the right and one to the next above), by a
rotation through 90° about the center of a square, and by a reflection in a vertical (or
horizontal) line along the edges of the square. The one reflection is all that is needed to
“turn the plane over”; a diagonal reflection can also be used. After being turned over,
the translations and rotations can be used again. The isometry group for this periodic
pattern in the plane surely contains a subgroup isomorphic to Z x Z generated by the
unit translations to the right and upward, and a subgroup isomorphic to D4 generated by
those isometries that carry one square (it can be any square) into itself.

If we consider the plane to be filled with parallelograms as in Fig. 11.7, we do not
get all the types of isometries that we did for Fig. 11.6. The symmetry group this time is
generated by the translations indicated by the arrows and a rotation through 180° about
any vertex of a parallelogram.

It can be shown that there are 17 different types of wallpaper patterns when they are
classified according to the types of rotations, reflections, and nontrivial glide reflections
that they admit. We refer you to Gallian [8] for pictures of these 17 possibilities and
a chart to help you identify them. The exercises illustrate a few of them. The situation
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11.6 Figure

11.7 Figure

in space is more complicated; it can be shown that there are 230 three-dimensional
crystallographic groups. The final exercise we give involves rotations in space.

M. C. Escher (1898-1973) was an artist whose work included plane-filling patterns.
In the exercises you are asked to analyze two of his works of this type.

® EXERCISES 11

1. This exercise shows that the group of symmetries of a certain type of geometric figure may depend on the
dimension of the space in which we consider the figure to lie.

a. Describe all symmetries of a point in the real line R; that is, describe all isometries of R that leave one point
fixed.

. Describe all symmetries (translations, reflections, etc.) of a point in the plane R2.
. Describe all symmetries of a line segment in R.

. Describe all symmetries of a line segment in R,

. Describe some symmetries of a line segment in R3,

e 0

2. Let P stand for an orientation preserving plane isometry and R for an orientation reversing one. Fill in the table
with P or R to denote the orientation preserving or reversing property of a product.
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14
R

3. Fill in the table to give all possible types of plane isometries given by a product of two types as indicated in
Tables 11.1 through 11.4. For example, a product of two rotations may be a rotation, or it may be another type.
Fill in the box corresponding to pp with both letters. Use your answer to Exercise 2 to eliminate some types.
Eliminate the identity from consideration.

Y

4, Draw a plane figure that has a one-element group as its group of symmetries in R2.
5.
6.
7
8.

Draw a plane figure that has a two-element group as its group of symmetries in R,

Draw a plane figure that has a three-element group as its group of symmetries in R2.
Draw a plane figure that has a four-element group isomorphic to Z4 as its group of symmetries in R2.

Draw a plane figure that has a four-element group isomorphic to the Klein 4-group V as its group of symmetries
in R2,

For each of the four types of plane isometries (other than the identity), give the possibilities for the order of an
isometry of that type in the group of plane isometries.

10. A plane isometry ¢ has a fixed point if there exists a point P in the plane such that ¢(P) = P. Which of the four
types of plane isometries (other than the identity) can have a fixed point?

9,

1
12
13. Referring to Exercise 10, which types of plane isometries, if any, have an infinite number of fixed points?

Referring to Exercise 10, which types of plane isometries, if any, have exactly one fixed point?
Referring to Exercise 10, which types of plane isometries, if any, have exactly two fixed points?

b

14. Argue geometrically that a plane isometry that leaves three noncolinear points fixed must be the identity map.

15. Using Exercise 14, show algebraically that if two plane isometries ¢ and ¥ agree on three noncolinear points,
that is, if ¢(P;) = ¥ (P;) for noncolinear points Py, P2, and P3, then ¢ and  are the same map.

16. Do the rotations, together with the identity map, form a subgroup of the group of plane isometries? Why or
why not?

17. Do the translations, together with the identity map, form a subgroup of the group of plane isometries? Why or
why not?

18. Do the rotations about one particular point P, together with the identity map, form a subgroup of the group of
plane isometries? Why or why not?

19. Does the reflection across one particular line L, together with the identity map, form a subgroup of the group
of plane isometries? Why or why not?

20. Do the glide reflections, together with the identity map, form a subgroup of the group of plane isometries?
Why or why not?

21. Which of the four types of plane isometries can be elements of a finite subgroup of the group of plane isome-
tries?

22. Completing a detail of the proof of Theorem 11.5, let G be a finite group of plane isometries. Show that
the rotations in G, together with the identity isometry, form a subgroup H of G, and that either H = G or
|G| = 2|H]|. [Hint: Use the same method that we used to show that |S,| = 2|A,]|.]
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23. Completing a detail in the proof of Theorem 11.5, let G be a finite group consisting of the identity isometry
and rotations about one point P in the plane. Show that G is cyclic, generated by the rotation in G that turns
the plane counterclockwise about P through the smallest angle 8 > 0. [Hint: Follow the idea of the proof that
a subgroup of a cyclic group is cyclic.]

Exercises 24 through 30 illustrate the seven different types of friezes when they are classified according to their
symmetries. Imagine the figure shown to be continued infinitely to the right and left. The symmetry group of a
frieze always contains translations. For each of these exercises answer these questions about the symmetry group
of the frieze.

a. Does the group contain a rotation?

b. Does the group contain a reflection across a horizontal line?

c. Does the group contain a reflection across a vertical line?

d. Does the group contain a nontrivial glide reflection?

e. To which of the possible groups Z, Dy, Z X Z3, or Do, X Zy do you think the symmetry group of the

frieze is isomorphic?
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Exercises 31 through 37 describe a pattern to be used to fill the plane by translation in the two directions given by
the specified vectors. Answer these questions in each case.

a. Does the symmetry group contain any rotations? If so, through what possible angles 6 where 0 < 6 <
180°7

b. Does the symmetry group contain any reflections?

29.

c. Does the symmetry group contain any nontrivial glide reflections?
31. A square with horizontal and vertical edges using translation directions given by vectors (1, 0) and (0, 1).
32. A square as in Exercise 31 using translation directions given by vectors (1, 1/2) and (0, 1).

33. A square as in Exercise 31 with the letter L at its center using translation directions given by vectors (1, 0) and
O, 1).

34. A square as in Exercise 31 with the letter E at its center using translation directions given by vectors (1, 0) and
O, 1).

35. A square as in Exercise 31 with the letter H at its center using translation directions given by vectors (1, 0)
and (0, 1).

36. A regular hexagon with a vertex at the top using translation directions given by vectors (1, 0) and (1, +/3).

37. A regular hexagon with a vertex at the top containing an equilateral triangle with vertex at the top and centroid
at the center of the hexagon, using translation directions given by vectors (1, 0) and (1, J3).

Exercises 38 and 39 are concerned with art works of M. C. Escher. Find images of the indicated art by searching on
the internet. Neglect the shading and colors in the figures and assume the markings in each human figure, reptile,
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or horseman are the same, even though they may be invisible due to shading. Answer the same questions (a), (b),
and (c) that were asked for Exercises 31 through 36, and also answer this part (d).

d. Assuming horizontal and vertical coordinate axes with equal scales as usual, give vectors in the two
nonparallel directions of vectors that generate the translation subgroup. Do not concern yourself with
the length of these vectors.

38. The Study of Regular Division of the Plane with Horsemen.

39. The Study of Regular Division of the Plane with Reptiles.

40. Let ¢ : R — U be given by ¢() = cos(6) + isin(f) and S = ¢[Z].
a. Show that any rotation mapping S to S is a rotation by an angle n € Z where angles are measured in radians.
b. Show that reflection across the x-axis maps S to S.
¢. What is the group of symmetries of S?

41. Show that the rotations of a cube in space form a group isomorphic to S4. [Hint: A rotation of the cube permutes
the diagonals through the center of the cube.]
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FACTOR GROUPS

Recall from Section 10 that for some group tables we can arrange the head on top and on
the left so that the elements are grouped into left cosets of a subgroup in such a way that
the coset blocks form a group table. We start this section by looking more closely at why
the cosets of {0,3} < Z¢ form a group and why the cosets of the subgroup {t, u} < D3
do not. Table 12.1 is the group table for Z¢ with the heads at the top and left sorted by
cosets of {0, 3}.

12.1 Table

+|0[3]|1]|4)2]5
0 |o|3|1]|4af2]5
3 |3|ol4a|1]5([2
1 |1|af2]5]|3]0
4 |4|1|5]2]|0]|3
2 [2(5(3]0]4]1
5[5 03|14

According to Table 12.1 the coset {1,4} plus the coset {2,5} is the coset {0,3}. This
means that if we add either 1 or 4 to either 2 or 5 in Zg, we should get either 0 or 3. This
is easily checked by adding the four possibilities.

1462=3
1465=0
4+462=0
4+465=3

We observe that if we wish to break up a group into its left cosets so the group table
shows an operation on the left cosets, we need to be sure that if a;, a; are in the same

113
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left coset and b, b, are in the same left coset, then a;b; and a,b, are in the same left
coset. If this condition is satisfied for a subgroup H < G, we say that the operation on
the left cosets of H is induced by the operation of G or that the operation of G induces
an operation on the left cosets of H. In this case for any a,b € G we write

(aH)(bH) = (ab)H

to mean that the product of any element in aH multiplied by any element in bH must be
in the left coset (ab)H.

We show that the operation + in the group Z induces an operation on the cosets of
5Z < 7. We first list the left cosets.

52 ={---—10,-5,0,5,10,...}
1+5Z={--—9,-4,1,6,11,...
2+5Z=1{--—8-3,2712,...
345Z=1{--—7,-2,3,813,...
4+5Z=1{--—6,—1,4,914,...

— et it gt

Let a; and a; be in the same left coset of 5Z. Then ay = a; + 5r for some r € Z. We
also let by, b, be in the same left coset of 5Z. Then b, = by + 5s for some s € Z. We
compute a; + b;.

ay + by = (a; + 5r) + (by + 5s)
=a; +5r+ b +5s
=a;+by+5r+5s 1)
= (a1 + b)) +5(r +5) )
€ (a1 +b)+5Z

So a; + b, is in the same coset as a; + by, which says that addition in Z induces an
operation on the five left cosets 5Z, 1 + 5Z,2 + 5Z,3 + 5Z,4 + 5Z. Looking back at
the calculations, we see that only properties shared by all groups were used in each step
except in line (1) where we used the fact that Z is abelian. Furthermore, line (2) is not
necessary since 5Z is a subgroup of Z so we know that 5Z is closed under addition.
From this example, it appears that as long as G is an abelian group, the operation of G
induces an operation on the left cosets of any subgroup of G. A

In Equation (1) of Example 12.2 we used the fact that 5r + by = b; + 5r. If we were
doing the same computation in multiplicative notation and using any group G and
subgroup H of G, this would correspond to hb; = by h. If the group G is not abelian,
then this computation fails. However, we can weaken the abelian condition slightly and
still get an induced operation on the left cosets. All we really need is that hb; = b
for some k' € H. This happens when the left coset b1 H is the same set as the right coset
Hb,.

Let H be a subgroup of G. We say that H is a normal subgroup of G if for all g € G,
gH = Hg. If H is a normal subgroup of G, we write H < G. ||

Recall that Theorem 10.17 states that if ¢ : G — G’ is a group homomorphism and
¢ is the identity element in G, then Ker(¢) = {g € G| ¢(g) = €'} has the property that
left and right cosets of Ker(¢) are the same. So the kernel of any homomorphism is a
normal subgroup.

The subgroup of even permutations A, < S, is normal since A, is the kernel of the
homomorphism sgn : S, — {1, —1}. A
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If H < G and G is an abelian group, then H is a normal subgroup of G. A

Let H={A € GL(n,R)| det(A) =1}. The determinant map satisfies det(AB) =
det(A) det(B), which means that the determinant map is a homomorphism, det :
GL(n,R) - R*. Thus H =Ker(det), which says that H < GL(n, R). This subgroup
H is called the special linear group and it is denoted by SL(n, R). A

Let H be a subgroup of a group G. Then left coset multiplication is well defined by the
equation

(aH)(bH) = (ab)H
if and only if H is a normal subgroup of G.

Suppose first that (aH)(bH) = (ab)H does give a well-defined binary operation on left
cosets. Leta € G. We want to show that aH and Ha are the same set. We use the standard
technique of showing that each is a subset of the other.

Let x € aH. Choosing representatives x € aH and a~'ca 'H, we have
(xH)(@a 'H) = (xa~')H. On the other hand, choosing representatives a € aH and
a~! € a”'H, we see that (aH)(a~'H) = eH = H. Using our assumption that left coset
multiplication by representatives is well defined, we must have xa~! = h € H. Then
x = ha, so x € Ha and aH C Ha. We leave the symmetric proof that Ha C aH to
Exercise 26.

‘We turn now to the converse: If H is a normal subgroup, then left coset multiplica-
tion by representatives is well-defined. Due to our hypothesis, we can simply say cosets,
omitting left and right. Suppose we wish to compute (aH)(bH). Choosing a € aH and
b € bH, we obtain the coset (ab)H. Choosing different representatives ah; € aH and
bh, € bH, we obtain the coset ah,bh,H. We must show that these are the same cosets.
Now h,b € Hb = bH, so h\b = bh; for some h; € H. Thus

(ah1)(bhy) = a(h1b)hy = a(bh3)hy = (ab)(h3hy)
and (ab)(h3hy) € (ab)H. Therefore, ahbh, is in (ab)H. *

Theorem 12.7 shows that we have an operation on the left cosets of H < G induced
by the operation on G if and only if H is a normal subgroup of G. We next verify that
this operation makes G/H, the cosets of H in G, a group.

Let H be a normal subgroup of G. Then the cosets of H form a group G/H under the
binary operation (aH)(bH) = (ab)H. A

Computing, (aH)[(bH)(cH)] = (aH)[(bc)H] = [a(bc)]H, and similarly, we have
[(aH)(bH))(cH) = [(ab)c]H, so associativity in G/H follows from associativity in
G. Because (aH)(eH) = (ae)H = aH = (ea)H = (eH)(aH), we see that eH = H is
the identity element in G/H. Finally, (a~'H)(aH) = (a~'a)H = eH = (aa"")H =
(aH)(a"'H) shows that a~'H = (aH)™!. .

The group G/H in the preceding corollary is the factor group (or quotient group) of
GbyH. [ |

Since Z is an abelian group, nZ is a normal subgroup. Corollary 12.8 allows us to
construct the factor group Z/nZ. For any integer m, the division algorithm says that
m = nq + r for some 0 < r < n. Therefore,m € r + nZ.SoZ/nZ = {k+nZ|0 < k <
n}. Thus (1 + nZ) = Z/nZ, which implies that Z/nZ is cyclic and isomorphic with Z,.

A
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Consider the abelian group R under addition, and let ¢ € R*. The cyclic subgroup {c)
of R contains as elements

<o —=3¢,-2¢,-c¢,0,¢,2¢,3c,- -+ .

Every coset of (c) contains just one element x such that 0 < x < c. If we choose these
elements as representatives of the cosets when computing in R/(c), we find that we are
computing their sum modulo ¢ as discussed for the computation in R. in Section 3.
For example, if ¢ = 5.37, then the sum of the cosets 4.65 + (5.37) and 3.42 + (5.37)
is the coset 8.07 + (5.37), which contains 8.07 — 5.37 = 2.7, which is 4.65 +537 3.42.
Working with these coset elements x where 0 < x < ¢, we thus see that the group R,
of Section 3 is isomorphic to R/{(c) under an isomorphism y where ¥ (x) = x + (c) for
all x € R.. Of course, R/(c) is then also isomorphic to the circle group U of complex
numbers of magnitude 1 under multiplication. A

We have seen that the group Z/(n) is isomorphic to the group Z,, and as a set,
Z,=1{0,1,3,4,--- ,n — 1}, the set of nonnegative integers less than n. Example 12.11
shows that the group R/(c) is isomorphic to the group R.. In Section 3, we choose the
notation R, rather than the conventional [0, ¢) for the half-open interval of nonnegative
real numbers less than ¢. We did that to bring out now the comparison of these factor
groups of Z with these factor groups of R.

Homomorphisms and Factor Groups

We learned that the kernel of any homomorphism ¢ : G — G’ is a normal subgroup of
G. Do all normal subgroups arise in this way? That is, for any normal subgroup H < G,
is there a group homomorphism ¢ : G — G’ for some group G’ such that H is the kernel
of G? The answer to the question is yes as we see in Theorem 12.12.

Let H be a normal subgroup of G. Then y : G — G/H given by y(x) =xH is a
homomorphism with kernel H.
Letx,y € G. Then

y(xy) = (oy)H = GH)OH) = y )y ),

50 y is a homomorphism. Since xH = H if and only if x € H, we see that the kernel of
y is indeed H. *

Since the kernel of any homomorphism ¢ : G — G’ is a normal subgroup, it is
natural to ask how the factor group G/Ker(¢) is related to G'. Theorem 12.12 and the
next example illustrate that there is a very strong connection.

(Reduction Modulo n) Let ¢ : Z — Z, be defined by letting ¢(m) be the remainder
when m is divided by n. We check that ¢ is a group homomorphism. Let m;,m; € Z
and suppose that the division algorithm gives us

my =nq) +n and
my = ngz + ra.
Then my + my = n(q1 + q2) + ri + r2. If ry + r2 < n, then
¢(my +mp) = 11 + 2 = $(my) +y $(m2).

On the other hand, if r; +r; > n, then m; +my = n(q1 + g» + 1) + (ry + r, — n) and
0 < ry + r, — n < n, which implies

é(my +my) =r +ry—n=¢(my) +, $(ma2).
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The kernel of ¢ is the set of all the multiples of n, nZ. So Z/Ker(¢) = Z/nZ, which
is isomorphic to Z,,. A

The previous example is a special case of the Fundamental Homomorphism
Theorem.

(The Fundamental Homomorphism Theorem) Let ¢ : G — G’ be a group ho-
momorphism with kernel H. Then ¢[G] is a group, and u : G/H — ¢[G] given by
n(gH) = ¢(g) is an isomorphism. If y : G — G/H is the homomorphism given by
v(8) = gH, then ¢(g) = poy(g) foreachg € G.

Theorem 8.5 says that ¢[G] is a subgroup of G’. Theorem 10.17 shows that the map
© : G/H — ¢[G] is well defined. We show p is a homomorphism. Let aH,bH € G/H.
Then pu((aH)(bH)) = p((ab)H) = ¢(ab) = ¢p(a)p(b) = n(aH)u(bH). Since ¢ maps G
onto ¢[G], u maps G/H onto ¢[G]. To show that u is one-to-one, we compute the
kernel of . Since u(aH) = ¢(a), the kernel of w is {aH | ¢(a) = €'}. But ¢(a) = ¢ if
and only if a € Ker(¢) = H. So Ker(u) = {H} which is the trivial subgroup of G/H. By
Corollary 10.19 p is one-to-one, which completes the proof that x is an isomorphism.
We next turn to the final statement of the theorem. Let g € G. Then

9(8) = n(gH) = u(y(g)) = noy(g)-
*

The Fundamental Homomorphism Theorem is sometimes called the First Isomor-
phism Theorem. As the name suggests, there are other related theorems. In fact we
will prove two others, the Second Isomorphism Theorem and the Third Isomorphism
Theorem, in Section 16.

Theorem 12.14 states that ¢(g) = poy(g). This can be visualized in Figure 12.15.
If we start with an element g € G, and map it to ¢(g), we get the same result as first
mapping g to y(g) and then mapping y(g) to Loy (g). When we have a situation like
this, we say that the map ¢ can be factored as ¢ = poy.

The isomorphism g in Theorem 12.14 is referred to as a natural or canonical iso-
morphism, and the same adjectives are used to describe the homomorphism y. There
may be other isomorphisms and homomorphisms for these same groups, but the maps
1 and y have a special status with ¢ and are uniquely determined by Theorem 12.14.

In summary, every homomorphism with domain G gives rise to a factor group G/H,
and every factor group G/H gives rise to a homomorphism mapping G into G/H. Ho-
momorphisms and factor groups are closely related. We give an example indicating how
useful this relationship can be.

12.15 Figure
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Classify the group (Z4 x Z,)/({0} x Z,) according to the fundamental theorem of
finitely generated abelian groups (Theorem 9.12).

The projection map m; : Z4 X Zy —> Z4 given by m1(x,y) = x is a homomorphism of
Z4 x Z onto Z4 with kernel {0} x Z,. By Theorem 12.14, we know that the given
factor group is isomorphic to Z. A

Normal Subgroups and Inner Automorphisms

We derive some alternative characterizations of normal subgroups, which often provide
us with an easier way to check normality than finding both the left and the right coset
decompositions.

Suppose that H is a subgroup of G such that ghg™! € H forallg € Gandall k € H.
Then gHg™! = {ghg~!|h € H} C H for all g € G. We claim that actually gHg™! = H.
We must show that H C gHg™! for all g € G. Let h € H. Replacing g by g! in the re-
lation ghg™! € H, we obtain g~ 'h(g~!)~! = g~'hg = h; where h; € H. Consequently,
h=ghig~' € gHg™!, and we are done.

Suppose that gH = Hg for all g € G. Then gh = h;g, so ghg™' € H forall g € G
and all 2 € H. By the preceding paragraph, this means that gHg™! = H for all g € G.
Conversely, if gHg™! = H for all g € G, then ghg™' = h; so gh=hg € Hg, and
gH C Hg. But also, g~'Hg = H giving g~'hg = hy, so that hg = gh, and Hg C
gH.

The comments after Definition 12.3 show that the kernel of any homomorphism is
a normal subgroup of the domain. Also, Theorem 12.12 says that any normal subgroup
is the kernel of some homomorphism.

We summarize our work as a theorem.

The following are four equivalent conditions for a subgroup H of a group G to be a
normal subgroup of G.

1. ghg ' eHforallge Gandh e H.

2. gHg '=HforallgeG.

3. There is a group homomorphism ¢ : G — G’ such that Ker(¢) = H.
4. gH =Hgforallg € G.

Condition (2) of Theorem 12.17 is often taken as the definition of a normal subgroup
H of a group G. L 2

Every subgroup H of an abelian group G is normal. We need only note that gh = hg for
allh € Hand all g € G, so, of course, ghg™' =h c Hforallg e Gandallhc H. A

If G is a group and g € G, then the map i, : G — G defined by i,(x) = gxg~! is
a group homomorphism since iz(xy) = gxyg™! = gxg 'gyg™' = ip(x)ig(x). We see that
gag™! = gbg™! if and only if a = b, s0 i, is one-to-one. Since g(g~'yg)g~! =y, we see
that i, is onto G, so it is an isomorphism of G with itself.

An isomorphism ¢ : G — G of a group G with itself is an automorphism of G. The
automorphism i; : G — G, where iy(x) = gxg~! for all x € G, is the inner automor-
phism of G by g. Performing i, on x is called conjugation of x by g. n

The equivalence of conditions (1) and (2) in Theorem 12.17 shows that gH = Hg
for all g € Gif and only if i;[H] = H for all g € G, that is, if and only if H is invariant
under all inner automorphisms of G. It is important to realize that i,[H] = H is an
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equation in sets; we need not have i,(h) = h for all h € H. That is i, may perform a
nontrivial permutation of the set H. We see that the normal subgroups of a group G are
precisely those that are invariant under all inner automorphisms. A subgroup K of G is
a conjugate subgroup of H if K = i,[H] = gHg™! for some g € G.

m EXERCISES 12

Computations

In Exercises 1 through 8, find the order of the given factor group.

1. Z/(3) 2. (Za x Z12)/({2) x (2))

3. (Za x L)/ (2, 1)) 4. (Z3 x Zs)/({0} x Zs)

5. (Zs x Ze)/((1,1)) 6. (Zso x Z15)/((15,15))

7. (Zas x Z15)/{(1, 1)) 8. (Zg x $3)/((2,(1,2,3)))
In Exercises 9 through 15, give the order of the element in the factor group.

9. 5+ (4) in Z15/(4) 10. 26 + (12) in Zgy/(12)
1L (2,1) +((1, 1)) in (Z3 x Ze)/{(1, 1)) 12. 3, 1) +((1, 1)) in (Zs x Z4)/{(1, 1))
13. (2,3) + ((0,3)) in (Z10 x Z4)/{(0,3)) 14. (2,5) + ((1,2)) in (Z3 x Zg)/{(1,2))

15. (2,0) + ((4,4)) in (Zs x Zg)/{(4,4))
16. Compute i,[H] for the subgroup H = {t, 1} of the dihedral group Dj.

Concepts

In Exercises 17 through 19, correct the definition of the italicized term without reference to the text, if correction

is needed, so that it is in a form acceptable for publication.

17. A normal subgroup H of G is one satisfying hG = Gh forall h € H.

18. A normal subgroup H of G is one satisfying g~'hg € H forallh € Hand all g € G.
19. An automorphism of a group G is a homomorphism mapping G into G.

20. What is the importance of a normal subgroup of a group G?

Students often write nonsense when first proving theorems about factor groups. The next two exercises are designed

to call attention to one basic type of error.

21. A student is asked to show that if H is a normal subgroup of an abelian group G, then G/H is abelian. The

student’s proof starts as follows:
We must show that G/H is abelian. Let a and b be two elements of G/H.

a. Why does the instructor reading this proof expect to find nonsense from here on in the student’s paper?

b. What should the student have written?
¢. Complete the proof.

22,

A torsion group is a group all of whose elements have finite order. A group is torsion free if the identity is

the only element of finite order. A student is asked to prove that if G is a torsion group, then so is G/H for

every normal subgroup H of G. The student writes
‘We must show that each element of G/H is of finite order. Let x € G/H.
Answer the same questions as in Exercise 21.

23. Determine whether each of the following is true or false.

a. It makes sense to speak of the factor group G/N if and only if N is a normal subgroup of the

group G.
b. Every subgroup of an abelian group G is a normal subgroup of G.
¢. The only automorphism of an abelian group is the identity map.
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d. Every factor group of a finite group is again of finite order.

e. Every factor group of a torsion group is a torsion group. (See Exercise 22.)
f. Every factor group of a torsion-free group is torsion free. (See Exercise 22.)
g. Every factor group of an abelian group is abelian.

h. Every factor group of a nonabelian group is nonabelian.

i. Z/nZ is cyclic of order n.

j- R/nR is cyclic of order n, where nR = {nr|r € R} and R is under addition.

Theory

24,

25.

26.

27.

29.

30.
31.

32.
33.
34,

3s.

36.
37.

38.

Let G; and G, be groups and 71 : G; X G — G be the function defined by 7y(a, b) = a. Prove that ; is a
homomorphism, find Ker(rr;), and prove (G; x G,)/Ker(s;) is isomorphic to G;.

Let G} and G, be groups and ¢ : G; X G, — G) X G be the function defined by ¢(a, b) = (a, e2) where e; is
the identity in G7. Prove that ¢ is a homomorphism, find Ker(¢), and prove (G x G2)/Ker(¢) is isomorphic
to Gi.

Complete the proof of Theorem 12.7 by showing that if H is a subgroup of a group G and if left coset
multiplication (aH)(bH) = (ab)H is well defined, then Ha C aH.

Prove that the torsion subgroup 7 of an abelian group G is a normal subgroup of G, and that G/T is torsion
free. (See Exercise 22.)

. A subgroup H is conjugate to a subgroup K of a group G if there exists an inner automorphism ig of G such

that ig[H] = K. Show that conjugacy is an equivalence relation on the collection of subgroups of G.
Characterize the normal subgroups of a group G in terms of the cells where they appear in the partition given
by the conjugacy relation in the preceding exercise.

Find all subgroups of D3 that are conjugate to H = {t, u}. (See Exercise 28.)

(Evaluation Homomorphism) Let F be the set of all functions mapping the real numbers to the real num-

bers and let ¢ € R. The sum of two functions f + g is the function defined by (f + g)(x) = f(x) + g(x). Func-
tion addition makes F a group. Let ¢ : F — R be defined by ¢.(f) = f(c).

a. Show that ¢, is a group homomorphism.
b. Find Ker(¢,).
c. Identify the coset of Ker(¢.) that contains the constant function f(x) = 1.

d. Find a well-known group that is isomorphic with F/Ker(¢.). Use the Fundamental Homomorphism Theo-
rem to prove your answer.

Let H be a normal subgroup of a group G, and let m = (G : H). Show that a™ € H foreverya € G.
Show that an intersection of normal subgroups of a group G is again a normal subgroup of G.

Given any subset S of a group G, show that it makes sense to speak of the smallest normal subgroup that
contains S. [Hint: Use Exercise 33.]

Let G be a group. An element of G that can be expressed in the form aba~'b~! for some a,b € G is a
commutator in G. The preceding exercise shows that there is a smallest normal subgroup C of a group G
containing all commutators in G; the subgroup C is the commutator subgroup of G. Show that G/C is an
abelian group.

Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.

Show that if H and N are subgroups of a group G, and N is normal in G, then H N N is normal in H. Show by
an example that H N N need not be normal in G.

Let G be a group containing at least one subgroup of a fixed finite order s. Show that the intersection of all
subgroups of G of order s is a normal subgroup of G. [Hint: Use the fact that if H has order s, then so does
x~'Hxforallx € G.]



39.

40.

41.

42,

b

Section 13  Factor-Group Computations and Simple Groups 121

a. Show that all automorphisms of a group G form a group under function composition.

b. Show that the inner automorphisms of a group G form a normal subgroup of the group of all automorphisms
of G under function composition. [Warning: Be sure to show that the inner automorphisms do form a
subgroup.]

Show that the set of all g € G such that i : G — G is the identity inner automorphism i, is a normal subgroup

of a group G.

Let G and G’ be groups, and let H and H’ be normal subgroups of G and G, respectively. Let ¢ be a homo-

morphism of G into G'. Show that ¢ induces a natural homomorphism ¢, : (G/H) — (G'/H') if ¢[H] € H'.

(This fact is used constantly in algebraic topology.)

Use the properties det(AB) = det(A) - det(B) and det(l,) = 1 for n X n matrices to show the n x n matrices

with determinant &1 form a normal subgroup of GL(n, R).

Let G be a group, and let & (G) be the set of all subsets of G. For any A, B € &7 (G), let us define the product

subset AB = {ab|a € A,b € B}.

a. Show that this multiplication of subsets is associative and has an identity element, but that & (G) is not a
group under this operation.

b. Show that if N is a normal subgroup of G, then the set of cosets of N is closed under the above operation
on & (G), and that this operation agrees with the multiplication given by the formula in Corollary 12.8.

¢. Show (without using Corollary 12.8) that the cosets of N in G form a group under the above operation. Is
its identity element the same as the identity element of & (G)?

SECTION 13 FACTOR-GROUP COMPUTATIONS AND SIMPLE GROUPS

Factor groups can be a tough topic for students to grasp. There is nothing like a bit
of computation to strengthen understanding in mathematics. We start by attempting to
improve our intuition concerning factor groups. Since we will be dealing with normal
subgroups throughout this section, we often denote a subgroup of a group G by N rather
than by H.

Let N be a normal subgroup of G. In the factor group G/N, the subgroup N acts
as identity element. We may regard N as being collapsed to a single element, either to
0 in additive notation or to e in multiplicative notation. This collapsing of N together
with the algebraic structure of G require that other subsets of G, namely, the cosets of
N, also each collapse into a single element in the factor group. A visualization of this
collapsing is provided by Fig. 13.1. Recall from Theorem 12.12 that y : G - G/N
defined by y(a) = aN for a € G is a homomorphism of G onto G/N. We can view
the “line” G/N at the bottom of Figure 13.1 as obtained by collapsing to a point each
coset of N in a copy of G. Each point of G/N thus corresponds to a whole vertical line

Q

| I | | |
| [ | | |
| [ | | |
| [ | | |
aN N bN (cN)(bN) (ab)N ¢N

= (¢b)N = (aN)(bN)

GIN

13.1 Figure
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segment in the shaded portion, representing a coset of N in G. It is crucial to remember
that multiplication of cosets in G/N can be computed by multiplying in G, using any
representative elements of the cosets as shown in the figure.

Additively, two elements of G will collapse into the same element of G/N if they
differ by an element of N. Multiplicatively, a and b collapse together if ab~! is in N.
The degree of collapsing can vary from nonexistent to catastrophic. We illustrate the
two extreme cases by examples.

The trivial subgroup N = {0} of Z is, of course, a normal subgroup. Compute Z/{0}.

Since N = {0} has only one element, every coset of N has only one element. That is, the
cosets are of the form {m} for m € Z. There is no collapsing at all, and consequently,
Z/{0} ~ Z. Each m € Z is simply renamed {m} in Z/{0}. A

Let n be a positive integer. The set nR = {nr | r € R} is a subgroup of R under addition,
and it is normal since R is abelian. Compute R/nR.

A bit of thought shows that actually nR = R, because each x € R is of the form n(x/n)
and x/n € R. Thus R/nR has only one element, the subgroup nR. The factor group is a
trivial group consisting only of the identity element. A

As illustrated in Examples 13.2 and 13.3 for any group G, we have G/{e} ~ G
and G/G = {e}, where {e} is the trivial group consisting only of the identity element e.
These two extremes of factor groups are of little importance. We would like knowledge
of a factor group G/N to give some information about the structure of G. If N = {e},
the factor group has the same structure as G and we might as well have tried to study
G directly. If N = G, the factor group has no significant structure to supply information
about G. If G is a finite group and N # {e} is a normal subgroup of G, then G/N is a
smaller group than G, and consequently may have a more simple structure than G. The
multiplication of cosets in G/N reflects the multiplication in G, since products of cosets
can be computed by multiplying in G representative elements of the cosets.

We give two examples showing that even when G/N has order 2, we may be able
to deduce some useful results. If G is a finite group and G/N has just two elements, then
we must have |G| = 2|N|. Note that every subgroup H containing just half the elements
of a finite group G must be a normal subgroup, since for each element a in G but not in
H, both the left coset aH and the right coset Ha must consist of all elements in G that are
not in H. Thus the left and right cosets of H coincide and H is a normal subgroup of G.

Because [S,| = 2|A,|, we see that A, is a normal subgroup of S,, and S, /A, has order
2. Let o be an odd permutation in S, so that S,,/A, = {A,,0A,}. Renaming the element
A, “even” and the element oA, “odd,” the multiplication in S,/A, shown in Table 13.5
becomes

(even)(even) = even (odd)(even) = odd
(even)(odd) = odd (odd)(odd) = even.

Thus the factor group reflects these multiplicative properties for all the permutations in
Sn. A

Example 13.4 illustrates that while knowing the product of two cosets in G/N does
not tell us what the product of two elements of G is, it may tell us that the product in G
of two types of elements is itself of a certain type.
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(The Converse of the Theorem of Lagrange is False) Recall that the Theorem of
Lagrange states that the order of a subgroup of a finite group G must divide the order of
G. We are now in a position to demonstrate that although the group A4 has 12 elements
and 6 divides 12, A4 has no subgroup of order 6.

Suppose that H were a subgroup of A4 having order 6. As observed before in Ex-
ample 13.4, it would follow that H would be a normal subgroup of A4. Then A4/H
would have only two elements, H and o H for some o € A4 not in H. Since in a group
of order 2, the square of each element is the identity, we would have HH = H and
(0cH)(cH) = H. Now computation in a factor group can be achieved by computing
with representatives in the original group. Thus, computing in A4, we find that for each
« € H we must have o € H and for each 8 € o H we must have 82 € H. That is, the
square of every element in A4 must be in H. But in A4, we have

(1,2,3)=(1,3,2 and (1,3,2) =(1,2,3)

so (1,2, 3) and (1, 3, 2) are in H. A similar computation shows that (1, 2, 4), (1, 4, 2),
(1, 3,4),(,4,3),(2,3,4), and (2, 4, 3) are all in H. This shows that there must be at
least 8 elements in H, contradicting the fact that H was supposed to have order 6. A

We now turn to several examples that compute factor groups. If the group we start
with is finitely generated and abelian, then its factor group will be also. Computing such
afactor group means classifying it according to the fundamental theorem (Theorem 9.12
or Theorem 9.14).

Let us compute the factor group (Zs x Zg)/((0, 1)). Here ((0, 1)) is the cyclic subgroup
H of Z4 x Zg generated by (0, 1). Thus

H ={(0,0),(0,1),(0,2),(0,3),(0,4),(0,5)}.

Since Z4 x Zg has 24 elements and H has 6 elements, all cosets of H must have
6 elements, and (Z4 x Zg)/H must have order 4. Since Z, X Zg is abelian, so is
(Z4 x Ze)/H (remember, we compute in a factor group by means of representatives
from the original group). In additive notation, the cosets are

H=(0,00+H, (1,0) +H, 2,0)+H, 3,00 +H.

Since we can compute by choosing the representatives (0, 0), (1, 0), (2, 0), and (3, 0), it
is clear that (Z4 x Zg)/H is isomorphic to Z,. Note that this is what we would expect,
since in a factor group modulo H, everything in H becomes the identity element; that is,
we are essentially setting everything in H equal to zero. Thus the whole second factor
Zg of Z4 x Zg is collapsed, leaving just the first factor Zs4. A

Example 13.7 is a special case of a general theorem that we now state and prove.
‘We should acquire an intuitive feeling for this theorem in terms of collapsing one of the
Jactors to the identity element.

Let G = H x K be the direct product of groups H and K. Then H={(h,e)|hecH)
is a normal subgroup of G. Also G/H is isomorphic to K in a natural way. Similarly,
G/K =~ H in a natural way.

(Eonsider the holnomorphism 7y : H x K — K, where ma(h, k) = k. Because Ker(m,) =
H, we see that H is a normal subgroup of H x K. Because 7 is onto K, Theorem 12.14
tells us that (H x K)/H ~ K. *

We continue with additional computations of abelian factor groups. To illustrate
how easy it is to compute in a factor group if we can compute in the whole group, we
prove the following theorem.
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If G is a cyclic group and N is a subgroup of G, then G/N is cyclic.

Let G be a cyclic group, so (a) = G for some a € G. Let N be any subgroup of G. Since
G is abelian, N is a normal subgroup of G. We compute the cyclic subgroup of G/N
generated by aN.

(aN) = {(aN)" |n € Z} = {a"N |n € Z}
Since {a" |n € Z} = G,
{a"N|neZ})={gN|ge G}

So (aN) contains every coset of G and we see that G/N is cyclic with generator (aN).
*

Let us compute the factor group (Z4 x Zg)/{((0, 2)). Now (0, 2) generates the subgroup
H = {(0,0),(0,2),(0,4)}

of Z4 x Zg of order 3. Here the first factor Z4 of Z4 x Zg is left alone. The Zg factor,
on the other hand, is essentially collapsed by a subgroup of order 3, giving a factor group
in the second factor of order 2 that must be isomorphic to Z,. Thus (Zs x Zg)/{(0, 2))
is isomorphic to Z4 x Z,.

We can verify that (Zs x Zg)/{(0,2)) is isomorphic to Zs x Z, by using Theo-
rem 12.14. We need a homomorphism ¢ : Zs x Z¢ — Z4 X Z, that is onto, with kernel
{(0,2)). Defining ¢ by ¢(a, b) = (0, r) where r is the remainder when b is divided by 2
does the trick. A

Let us compute the factor group (Z4 x Zg)/((2, 3)). Be careful! There is a great temp-
tation to say that we are setting the 2 of Z4 and the 3 of Zg both equal to zero, so that
Zj4 is collapsed to a factor group isomorphic to Z; and Zg to one isomorphic to Zs,
giving a total factor group isomorphic to Z, x Zs. This is wrong! Note that

H = {(2,3)) ={(0,0),(2,3)}

is of order 2, so (Zs x Zg)/{(2,3)) has order 12, not 6. Setting (2, 3) equal to zero does
not make (2, 0) and (0, 3) equal to zero individually, so the factors do not collapse
separately.

The possible abelian groups of order 12 are Zs x Z3 and Z; x Z; x Z3, and we
must decide to which one our factor group is isomorphic. These two groups are most
easily distinguished in that Z4 x Z3 has an element of order 4, and Z, x Z, x Z3 does
not. We claim that the coset (1,0) + H is of order 4 in the factor group (Z4 x Zg)/H.
To find the smallest power of a coset giving the identity in a factor group modulo H, we
must, by choosing representatives, find the smallest power of a representative that is in
the subgroup H. Now,

4(1,0) = (1,00 + (1,0) + (1,0) + (1,0) = (0, 0)

is the first time that (1, 0) added to itself gives an element of H. Thus (Zs x Zg)/{(2,3))
has an element of order 4 and is isomorphic to Z4 x Zs3 or Z;,.

We can use Theorem 12.14 to verify that (Zs x Zg)/{(2,3)) is isomorphic to Z,,
although it is a little challenging to see what the homomorphism ¢ : Zs x Z¢ — Zi,
should be. We define ¢ : Z4 x Z¢ — Z2 by setting ¢(a,b) = 3a +12 (12 — 2b). Here
we interpret 3a and 2b as integer multiplication, so 0 < 3a < 12 and 0 < 2b < 12.
The map ¢ is a homomorphism, but this takes some checking, which we leave to
the reader. Also, Ker(¢) = {(a,b) € Z4 x Zg | 3a = 2b} = {(0,0),(2,3)} = ((2,3)). We
also see that ¢(1, 1) = 1, which implies that ¢ maps onto Z;,. By the Fundamental
Homomorphism Theorem, (Zs x Zg)/((2,3)) is isomorphic to Z;,. A
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Let us compute (that is, classify as in Theorem 9.12) the group (Z x Z)/{(1, 1)). We may
visualize Z x Z as the points in the plane with both coordinates integers, as indicated
by the dots in Fig. 13.13. The subgroup ((1, 1)) consists of those points that lie on the
45° line through the origin, indicated in the figure. The coset (1,0) + ((1, 1)) consists of
those dots on the 45° line through the point (1, 0), also shown in the figure. Continuing,
we see that each coset consists of those dots lying on one of the 45° lines in the figure.
‘We may choose the representatives

-+ 5(=3,0),(=2,0),(-1,0),(0,0),(1,0),(2,0),3,0), - --

of these cosets to compute in the factor group. Since these representatives correspond
precisely to the points of Z on the x-axis, we see that the factor group (Z x Z)/((1, 1))
is isomorphic to Z.

Again, we can use the Fundamental Homomorphism Theorem as another method
of computing this group. We let ¢ : Z x Z — Z be defined by ¢(n,m) =n—m.
It is easy to verify that ¢ is a homomorphism, ¢ maps onto Z, and Ker(¢) =
{(n,m) € Z x Z|n =m} = ((1,1)). So by the Fundamental Homomorphism Theo-
rem, (Z x Z)/{(1,1)) is isomorphic to Z. Furthermore, an isomorphism is given by
wu((n,m) + ((1, 1))) = n—m. This is the same isomorphism that we saw above. A

/ 5

~4
-5 /
13.13 Figure

‘We now compute (Z x Z)/{(2,4)). This is similar to Example 13.12, but there is a little
twist to this one. In this example, we know that the factor group has an element with or-
der 2, since (1,2) & ((2,4)), but (1,2) + (1,2) € ((2,4)). Furthermore, (Z x Z)/{(2, 4))
has an element (1,0) + ((2,4)) with infinite order since (n,0) ¢ ((2,4)) forany n € Z*.
Figure 13.15 illustrates the situation. Along the line y = 2x only every other lattice point
isin ((2, 4)). These points are filled dots in the figure. Each line with slope two contains
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two cosets, one indicated with solid dots and one with hollow dots. Adding (1, 2) moves
the solid dot cosets to the hollow dot cosets and the hollow dot cosets to the solid dot
cosets while staying on the same line. Adding (0, 1) moves a coset from one line to the
next. We may choose coset representatives

..,(0,-3),(0,-2),(0,-1),(0,0),(0,1),(0,2), (0, 3),...
for the solid dot cosets and
. (1,-3),(1,-2),(1, - 1),(1,0),(1,1),(1,2),(1, 3),...

for the hollow dot cosets. So it seems that we have two copies of the integers, one with
a zero in the first coordinate and one with a one in the first coordinate. This leads us to
guess that (Z x Z)/((2,4)) is isomorphic with Z, x Z.

To verify that our guess is correct, we seek a homomorphism ¢ : Z x Z — Zy x Z
that maps onto Z, x Z and whose kernel is ((2,4)). We let ¢(a, b) = (r,2a — b) where
r is the remainder when a is divided by 2. It is easy to check that ¢ is a homomorphism.
Furthermore, ¢(0, —1) = (0,1) and ¢(1,2) = (1,0), which implies that ¢ maps onto
Z x Z,. It remains to compute Ker(¢).

Ker(¢) = {(a,b) | b = 2a and a is even} = {(2n,4n) | n € Z} = ((2,4)).

Thus (Z x Z)/{(2,4)) is isomorphic to Z x Z, by the Fundamental Homomorphism
Theorem. Furthermore, an isomorphism p : (Z x Z)/((2,4)) — Z, x Z is defined by
the formula p((a, b) + ((2,4))) = (r,2a — b) where r is the remainder when a is divided
by 2. A

13.15 Figure

Simple Groups

As we mentioned in the preceding section, one feature of a factor group is that it gives
crude information about the structure of the whole group. Of course, sometimes there
may be no nontrivial proper normal subgroup. For example, Lagrange’s Theorem shows
that a group of prime order can have no nontrivial proper subgroup of any sort.
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A group is simple if it is nontrivial and has no proper nontrivial normal subgroup. H
The alternating group A, is simple forn > 5.
See Exercise 41. L 4

There are many simple groups other than those given above. For example, As is of
order 60 and Ag is of order 360, and there is a simple group of nonprime order, namely
168, between these orders.

The complete determination and classification of all finite simple groups is one
of the mathematical triumphs of the twentieth century. Hundreds of mathematicians
worked on this task from 1950 to 1980. It can be shown that a finite group has a sort of
factorization into simple groups, where the factors are unique up to order. The situation
is similar to the factorization of positive integers into primes. The knowledge of all
finite simple groups can be used to solve some problems of finite group theory and
combinatorics.

We have seen in this text that a finite simple abelian group is isomorphic to Z,
for some prime p. In 1963, Thompson and Feit [21] published their proof of a long-
standing conjecture of Burnside, showing that every finite nonabelian simple group is
of even order. Further great strides toward the complete classification were made by
Aschbacher in the 1970s. Early in 1980, Griess announced that he had constructed a
predicted “monster” simple group of order

808,017,424,794,512,875, 886,459, 904,961, 710, 757, 005, 754, 368,
000, 000, 000.

Aschbacher added the final details of the classification in August 1980. The research
papers contributing to the entire classification fill roughly 5000 journal pages.

We turn to the characterization of those normal subgroups N of a group G for which
G/N is a simple group. First we state an addendum to Theorem 8.5 on properties of a
group homomorphism. The proof is left to Exercises 37 and 38.

Let ¢ : G — G’ be a group homomorphism. If N is a normal subgroup of G, then ¢[N]
is a normal subgroup of ¢[G]. Also, if N’ is a normal subgroup of ¢[G], then ¢~'[N'] is
a normal subgroup of G. L 4

Theorem 13.18 should be viewed as saying that a homomorphism ¢ : G — G’ pre-
serves normal subgroups between G and ¢[G]. It is important to note that ¢[N] may
not be normal in G’, even though N is normal in G. For example, ¢ : Z, — S3, where
¢(0) = ¢ and ¢(1) = (1,2) is a homomorphism, and Z, is a normal subgroup of itself,
but {, (1,2)} is not a normal subgroup of Ss.

We can now characterize when G/N is a simple group.

A maximal normal subgroup of a group G is a normal subgroup M not equal to G
such that there is no proper normal subgroup N of G properly containing M. ]

M is a maximal normal subgroup of G if and only if G/M is simple.

Let M be a maximal normal subgroup of G. Consider the canonical homomorphism
y : G — G/M given by Theorem 12.12. Now y ! of any nontrivial proper normal sub-
group of G/M is a proper normal subgroup of G properly containing M. But M is max-
imal, so this cannot happen. Thus G/M is simple.

Conversely, Theorem 13.18 shows that if N is a normal subgroup of G properly
containing M, then y[N] is normal in G/M. If also N # G, then

yINI#G/M  and  y[N]#{M}.
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Thus, if G/M is simple so that no such y[N] can exist, no such N can exist, and M is
maximal. .

The Center and Commutator Subgroups

Every nonabelian group G has two important normal subgroups, the center Z(G) of
G and the commutator subgroup C of G. (The letter Z comes from the German word
zentrum, meaning center.) The center Z(G) is defined by

Z(G) ={ze€ G|zg =gz forall g € G}.

Exercise 59 of Section 5 shows that Z(G) is an abelian subgroup of G. Since for each g €
G and z € Z(G) we have gzg~! = zgg™! = ze = z, we see at once that Z(G) is a normal
subgroup of G. If G is abelian, then Z(G) = G; in this case, the center is not useful.

The center of a group G always contains the identity element e. It may be that Z(G) =
{e}, in which case we say that the center of G is trivial. For example, examination of
Table 4.15 for the group S3 shows us that Z(S3) = {t}, so the center of S; is trivial. (This
is a special case of Exercise 40, which shows that the center of every nonabelian group
of order pq for primes p and q is trivial.) Consequently, the center of S3 x Zs must be
{t} x Zs, which is isomorphic to Zs. A

Turning to the commutator subgroup, recall that in forming a factor group of G
modulo a normal subgroup N, we are essentially putting every element in G that is in
N equal to e, for N forms our new identity in the factor group. This indicates another
use for factor groups. Suppose, for example, that we are studying the structure of a non-
abelian group G. Since Theorem 9.12 gives complete information about the structure
of all finitely generated abelian groups, it might be of interest to try to form an abelian
group as much like G as possible, an abelianized version of G, by starting with G and
then requiring that ab = ba for all a and b in our new group structure. To require that
ab = ba s to say that aba~'b~! = e in our new group. An element aba~'b~! in a group
is a commutator of the group. Thus we wish to attempt to form an abelianized ver-
sion of G by replacing every commutator of G by e. By the first observation of this
paragraph, we should then attempt to form the factor group of G modulo the smallest
normal subgroup we can find that contains all commutators of G.

Let G be a group. The set of all commutators aba~'b~! for a,b € G generates a sub-
group C (the commutator subgroup) of G. This subgroup C is a normal subgroup of G.
Furthermore, if N is a normal subgroup of G, then G/N is abelian if and only if C < N.

The commutators certainly generate a subgroup C; we must show that it is normal in
G. Note that the inverse (aba~'b~1)~! of a commutator is again a commutator, namely,
bab~'a™'. Also e = eee”'e~! is a commutator. Theorem 7.7 then shows that C consists
precisely of all finite products of commutators. For x € C, we must show that g~xg € C
for all g € G, or that if x is a product of commutators, so is g~!xg for all g € G. By
inserting e = gg~! between each product of commutators occurring in x, we see that it
is sufficient to show for each commutator cdc~'d~! that g~'(cdc~'d~!)g is in C. But

g cde'd Vg = (g cdc ™ Ye)d 'g)
= (g cde™)(gd ' dg™)d'®)
=g )d(g )\ Idg ™ d g),

which is in C. Thus C is normal in G.
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The rest of the theorem is obvious if we have acquired the proper feeling for factor
groups. One doesn’t visualize in this way, but writing out that G/C is abelian follows
from

(aC)(bC) = abC = ab(b~'a"'ba)C
= (abb~'a~"YbaC = baC = (bC)(aC).
Furthermore, if N is a normal subgroup of G and G/N is abelian, then (a"!N)(b™!N) =
(b~'N)(a~'N); that is, aba='b~'N = N, so aba='b~! € N, and C < N. Finally, if C <
N, then
(aN)(bN) = abN = ab(b~'a"'ba)N
= (abb~'a~")baN = baN = (bN)(@aN).

Using cycle notation in the symmetric group S3, one commutator is
(1,2,3)(2,3)(1,2,3)™"(2,3)™" = (1,2,3)2,3)(1,3,2)(2,3) = (1,3,2).

So the commutator subgroup C contains ((1, 3,2)) = A3, the alternating group. Since
S3/Aj3 is abelian (isomorphic with Z,), Theorem 13.22 says that C < As. Therefore, A3
is the commutator subgroup. A

m EXERCISES 13

Computations

In Exercises 1 through 14, classify the given group according to the fundamental theorem of finitely generated
abelian groups.

1. (Z2 x Z4)/{(0,1)) 2. (Zp x Z4)/{(0,2))

3. (Z2 x Za)/((1,2)) 4. (Zs x Zg)/{(1,2))

5. (Za x Za x Zg)/((1,2,4)) 6. (Z x 7)/{(0, 1))

7. (Z x 7)/{(0,2)) 8. (Z x Z x Z)/{(1,1,1))

9. (Z x Z x 74)/{(3,0,0)) 10. (Z x Z x Zg)/{(0,4,0))
11. (Z x Z)/{(2,2)) 12. (Z x Z x Z)/((3,3,3))
13. (Z x Z)/{(2,6)) 14. (Z x Z x Z)/{(1,1, 1))
15. Find both the center and the commutator subgroup of Dy.

16.
17.
18.

Find both the center and the commutator subgroup of Z3 x S;3.

Find both the center and the commutator subgroup of S3 x Djy.

Describe all subgroups of order < 4 of Z4 x Z4, and in each case classify the factor group of Z4 x Z4 modulo
the subgroup by Theorem 9.12. That is, describe the subgroup and say that the factor group of Z4 x Z4 modulo
the subgroup is isomorphic to Zy x Za, or whatever the case may be. [Hint: Z4 x Z4 has six different cyclic
subgroups of order 4. Describe them by giving a generator, such as the subgroup ((1, 0)). There is one subgroup
of order 4 that is isomorphic to the Klein 4-group. There are three subgroups of order 2.]

Concepts

In Exercises 19 and 20, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

19. The center of a group G contains all elements of G that commute with every element of G.

20. The commutator subgroup of a group G is {a~1b~'ab|a,b € G}.
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Determine whether each of following is true or false.

a. Every factor group of a cyclic group is cyclic.

b. A factor group of a noncyclic group is again noncyclic.

¢. R/Z under addition has no element of order 3.

d. R/Q under addition has no element of order 2.

e. R/Z under addition has an infinite number of elements of order 4.

f. If the commutator subgroup C of a group G is {e}, then G is abelian.
g. If G/H is abelian, then the commutator subgroup C of G contains H.
h. The commutator subgroup of a simple group G must be G itself.

i. The commutator subgroup of a nonabelian simple group G must be G itself.
j- All nontrivial finite simple groups have prime order.

In Exercises 22 through 25, let F be the additive group of all functions mapping R into R, and let F* be the
multiplicative group of all elements of F that do not assume the value 0 at any point of R.

22,

23.

24,

25.

Let K be the subgroup of F consisting of the constant functions. Find a subgroup of F to which F/K is
isomorphic.

Let K* be the subgroup of F* consisting of the nonzero constant functions. Find a subgroup of F* to which
F*/K* is isomorphic.

Let K be the subgroup of continuous functions in F. Can you find an element of F/K having order 2? Why or
why not?

Let K* be the subgroup of F* consisting of the continuous functions in F*. Can you find an element of F*/K*
having order 2? Why or why not?

In Exercises 26 through 28, let U be the multiplicative group {z € C | lz| =1}

26.
27.
28.
29.
30.

31

32.

33.

Let z9 € U. Show that zoU = {z0z| z € U} is a subgroup of U, and compute U/zoU.

To what group we have mentioned in the text is U/(—1) isomorphic?

Let &, = cos(27/n) + isin(2m /n) where n € Z*. To what group we have mentioned is U/{¢,) isomorphic?
To what group mentioned in the text is the additive group R/Z isomorphic?

Give an example of a group G having no elements of finite order greater than 1 and a normal subgroup H < G,
H # G, so that in G/H every element has finite order.

Let H and K be normal subgroups of a group G. Give an example showing that we may have H ~ K while
G/H is not isomorphic to G/K.

Describe the center of every simple

a. abelian group
b. nonabelian group.

Describe the commutator subgroup of every simple

a. abelian group
b. nonabelian group.

Proof Synopsis

34,
3s.

Give a one-sentence synopsis of the proof of Theorem 13.9.
Give at most a two-sentence synopsis of the proof of Theorem 13.20.

Theory

36.
37.

Show that if a finite group G contains a nontrivial subgroup of index 2 in G, then G is not simple.

Let ¢ : G — G’ be a group homomorphism, and let N be a normal subgroup of G. Show that ¢[N] is a normal
subgroup of ¢[G].
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38. Let ¢ : G — G’ be a group homomorphism, and let N’ be a normal subgroup of G’. Show that ¢~![N'] is a
normal subgroup of G.

39. Show that if G is nonabelian, then the factor group G/Z(G) is not cyclic. [Hint: Show the equivalent contra-
positive, namely, that if G/Z(G) is cyclic then G is abelian (and hence Z(G) = G).]

40. Using Exercise 39, show that a nonabelian group G of order pq where p and g are primes has a trivial center.

41. Prove that A, is simple for n > 5, following the steps and hints given.

a. Show A, contains every 3-cycle if n > 3.

b. Show A, is generated by the 3-cycles for n > 3. [Hint: Note that (a,b)(c,d) = (a,c,b)(a,c,d) and
(a,c)a,b) = (a,b,c).]

c. Let r and s be fixed elements of {1,2,--- ,n} for n > 3. Show that A, is generated by the n “special” 3-
cycles of the form (r, s, i) for 1 < i < n [Hint: Show every 3-cycle is the product of “special” 3-cycles by
computing

(r5, 0%, (rs, )52, (s )20, s, i),

and
5, )2(r, 5, k)(r, 5, /)21, 5, ).

Observe that these products give all possible types of 3-cycles.]

d. Let N be a normal subgroup of A, for n > 3. Show that if N contains a 3-cycle, then N = A,,. [Hint: Show
that (7, s, i) € N implies that (,s,j) € N forj = 1,2, -- ,n by computing

(. )G D), 5, D (r, @)™

e. Let N be a nontrivial normal subgroup of A, for n > 5. Show that one of the following cases must hold,
and conclude in each case that N = A,,.

CaseI N contains a 3-cycle.

Case I N contains a product of disjoint cycles, at least one of which has length greater than 3. [Hint: Sup-
pose N contains the disjoint product o = p(a1,az, - - - ,a,). Show 6 ~L(a1, a2,a3)0 (a1, a2,a3) " is
in N, and compute it.]

Case Il N contains a disjoint product of the form o = u(ay, as, ag)(ai, a2, a3). [Hint: Show 0~ 1(ay, a2, as)
o(a1,a2,a4)"" is in N, and compute it.]

Case IV N contains a disjoint product of the form o = u(ay,az,a3) where p is a product of disjoint 2-
cycles. [Hint: Show 02 € N and compute it.]

Case V N contains a disjoint product o of the form o = p(a3, as)(a1, a2), where p is a product of an even
number of disjoint 2-cycles. [Hint: Show that a_l(a 1,a2,a3)o (a1, az, a3)_1 is in N, and compute
it to deduce that @ = (a2, a4)(a1,a3)is in N. Using n > 5 for the first time, find i # a;, az,a3,a4 in
{1,2,--- ,n}. Let B = (a1, a3, i). Show that B‘laﬁa € N, and compute it.]

42. Let N be a normal subgroup of G and let H be any subgroup of G. Let HN = {hn|h € H,n € N}. Show that
HN is a subgroup of G, and is the smallest subgroup containing both N and H.

43. With reference to the preceding exercise, let M also be a normal subgroup of G. Show that NM is again a
normal subgroup of G.

44. Show that if H and K are normal subgroups of a group G such that H N K = {e}, then hk = kh forall h € H
and k € K. [Hint: Consider the commutator hkh~'k~! = (hkh™' )k~ = h(kh=1k~1).]

45. With reference to the three preceding exercises, let H and K be normal subgroups of a group G such that
HK = G and H N K = {e}. Prove that G is isomorphic with H x G.
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TGROUP ACTION ON A SET

We have seen examples of how groups may act on things, like the group of symmetries
of a triangle or of a square, the group of rotations of a cube, the general linear group
acting on R”, and so on. In this section we give the general notion of group action and
apply it to learn more about finite groups. The next section will give applications to
counting.

The Notion of a Group Action

Definition 1.1 defines a binary operation * on a set S to be a function mapping S x S into
S. The function * gives us a rule for “multiplying” an element s; in S and an element s,
in S to yield an element s; * s in S.

More generally, for any sets A, B, and C, we can view a map * : A x B — C as
defining a “multiplication,” where any element a of A times any element b of B has as
value some element ¢ of C. Of course, we write a * b = ¢, or simply ab = c. In this
section, we will be concerned with the case where X is a set, G is a group, and we have
amap * : G x X — X. We shall write x(g, x) as g * x or gx.

Let G = GL(n, R) and X the set of all column vectors in R". Then for any matrix A € G
and vector v € X, Av is a vector in X. So multiplying is an operation * : G x X — X.
From linear algebra, we know that if B is also a matrix in G, then (AB)v = A(Bv). Fur-
thermore, for the identity matrix 7, Iv = v. A

Let G be the dihedral group D,. Then elements of D, permute the set Z, =
{0,1,2,3,...,n— 1}. For example, p(k) =k +, 1. Thus we have an operation * :
D, x Z, — Z,. Furthermore, if «,y € D, and k € Z,, then (ay)(k) = a(y(k)) and
(k) = k. A

The two previous examples share the same properties, which we formalize in
Definition 14.3.

Let X be a set and G a group. An action of G on X is amap * : G x X — X such that

1. ex=xforallxe X,
2. (g182)(x) = g1(gox) forall x € X and all g1, g, € G.

Under these conditions, X is a G-set. [ ]

Let X be any set, and let H be a subgroup of the group Sx of all permutations of X.
Then X is an H-set, where the action of o € H on X is its action as an element of
Sx, so that ox = o(x) for all x € X. Condition 2 is a consequence of the definition of
permutation multiplication as function composition, and Condition 1 is immediate from
the definition of the identity permutation as the identity function. Note that, in particular,
{1,2,3,--. ,n}is an S,-set. A

Our next theorem will show that for every G-set X and each g € G, the map
0, : X — X defined by og(x) = gx is a permutation of X, and that there is a homo-
morphism ¢ : G — Sx such that the action of G on X is essentially the Example 14.4
action of the image subgroup H = ¢[G] of Sx on X. So actions of subgroups of Sx
on X describe all possible group actions on X. When studying the set X, actions using
subgroups of Sy suffice. However, sometimes a set X is used to study G via a group
action of G on X. Thus we need the more general concept given by Definition 14.3.

¥ This section is a prerequisite only for Sections 15 and 17.
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Let X be a G-set. For each g € G, the function o : X — X defined by o,(x) = gx for
x € X is a permutation of X. Also, the map ¢ : G — Sx defined by ¢(g) = o is a ho-
momorphism with the property that ¢(g)(x) = gx.

To show that o, is a permutation of X, we must show that o, is a one-to-one map
of X onto itself. Suppose that og(x;) = gg(x2) for xi,x; € X. Then gx; = gx,. Con-
sequently, g~'(gx;) = g~!(gx2). Using Condition 2 in Definition 14.3, we see that
(g~ 'g)x; = (g 'g)x2, s0 ex; = ex,. Condition 1 of the definition then yields x; = x3,
s0 0, is one-to-one. The two conditions of the definition show that for x € X, we have
ag(g_lx) =glg Y =(gg )xr=ex=1x, so o, maps X onto X. Thus o, is indeed a
permutation.

To show that ¢ : G — Sx defined by ¢(g) = 0, is a homomorphism, we must
show that ¢(g182) = ¢(g1)P(g2) for all g1, g2 € G. We show the equality of these two
permutations in Sy by showing they both carry an x € X into the same element. Using
the two conditions in Definition 14.3 and the rule for function composition, we obtain

$(8182)(x) = 0, 4,(x) = (8182)x = £1(82%) = 810%,(x) = 0, (0, (%))
= (0,0 0, )(x) = (05,0%,)(x) = ($(g1)P(82))(x).

Thus ¢ is a homomorphism. The stated property of ¢ follows at once since by our
definitions, we have ¢(g)(x) = o,(x) = gx. L 4

It follows from the preceding theorem and Theorem 12.17 that if X is a G-set, then
the subset of G leaving every element of X fixed is a normal subgroup N of G, and we
can regard X as a G/N-set where the action of a coset gN on X is given by (gN)x = gx
for each x € X. If N = {e}, then the identity element of G is the only element that leaves
every x € X fixed; we then say that G acts faithfully on X. A group G is transitive on
a G-set X if for each x1,x; € X, there exists g € G such that gx; = x,.

We continue with more examples of G-sets.

Every group G is itself a G-set, where the action on g, € G by g; € G is given by left
multiplication. That is, *(g1, g2) = g182. If H is a subgroup of G, we can also regard G
as an H-set, where *(h, g) = hg. A

Let H be a subgroup of G. Then G is an H-set under conjugation where *(h, g) = hgh™!
for g € G and h € H. Condition 1 is obvious, and for Condition 2 note that

*(hha, 8) = (hih2)g(hihe) ™' = hy(hoghy DR = *(hy, %(hy, ).

We always write this action of H on G by conjugation as hgh~!. The abbreviation hg
described before the definition would cause terrible confusion with the group operation
of G.

Let H be a subgroup of G, and let Ly be the set of all left cosets of H. Then Ly is
a G-set, where the action of g € G on the left coset xH is given by g(xH) = (gx)H.
Observe that this action is well defined: if yH = xH, then y = xh for some h € H, and
g(yH) = (gy)H = (gxh)H = (gx)(hH) = (gx)H = g(xH). A series of exercises shows
that every G-set is isomorphic to one that may be formed using these left coset G-sets
as building blocks. (See Exercises 22 through 25.) A

Let us look closer at the the dihedral group D4, which permutes the vertices of the square
as labeled in Figure 14.10. As indicated in the figure, we label the vertices 0, 1,2,3
as usual; the sides sy, s1, 52, 53; the midpoints of the sides Py, Py, P, P3; the diagonals
d, dy; the lines joining opposite side midpoints m,, m,; and we label the intersection of
the lines d, d,, m;, my with C.



134

Part 111

14.12 Example

Homomorphisms and Factor Groups

14.10 Figure

We can think of the set
X =1{0,1,2,3, 50,51, 52,53, my,my,dy,dz, C, Py, Py, Py, P3}

as a Dy-set in a natural way. Table 14.11 shows the action of D4 on X. Recall that ¢ is the
identity, p* is rotation by km/2, and p is reflection across the line d. We can see from
the table that p is reflection across the line m,, 10? is reflection across the line d;, and
up? is reflection across the line m;. It is worthwhile to spend a little time to understand

how Table 14.11 was constructed before continuing. A
14.11 Table

0 1 2 3 s 851 s9 s3 m m dy d C Py P, P, P3
[ 01 2 3 s 851 s9 s3 m m dy dp C Py P, P, P3
P 1 2 3 0 59 s9 s3 so my m dp d C Py P, P3 Py
pz 2 3 0 1 s2 s3 So 51 m my d1 dz C P2 P3 PO Pl
p3 3 01 2 s3 s9 s1 so0 m m dy d C P3 Py P P
n 0 3 2 1 s3 s 59 so my m dy dp C Py P, P Py
pwp |3 2 1 0 s 59 so s3 m m dp d C Py Py Py P3
[Lpz 2 1 0 3 s s9 s3 so0 m m dy d C P Py P3 P
[Lp3 1 0 3 2 so0 s3 s9 s m m dp d C Py Py P, P
Isotropy Subgroups

Let X be a G-set. Let x € X and g € G. It will be important to know when gx = x. We
let

X, ={xeX|gx=x} and G, ={geG|gx=x}.

For the D4-set X in Example 14.9, we have
X =X, X, ={C}, X, ={0,2,d,,d,,C}).
Also, using the same Dy action on X,
Go = {1, u}, G, = {t, up’}, G, = {t, p% 1, up?}.

We leave the computations of the other sets of the form X,, and G, to Exercises 1
and 2. A

Note that the subsets G, given in the preceding example were, in each case, sub-
groups of G. This is true in general.
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Let X be a G-set. Then G, is a subgroup of G for each x € X.

Let x € X and let g1,82 € Gx. Then gi1x = x and g,x = x. Consequently, (g;82)x =
21(g2x) = g1x = x, 50 g182 € Gy, and G, is closed under the induced operation of G.
Of course, ex = x,50 ¢ € G;. If g€ G, thengxr = x,sox =ex = (g"'gx =g~ (gx) =
g~ 'x, and consequently g~! € G,. Thus G; is a subgroup of G. L 4

Let X be a G-set and let x € X. The subgroup G is the isotropy subgroup of x. ]

Orbits

For the Dy4-set X of Example 14.9 with action table in Table 14.11, the elements in the
subset {0, 1, 2, 3} are carried into elements of this same subset under action by Djy.
Furthermore, each of the elements 0, 1, 2, and 3 is carried into all the other elements of
the subset by the various elements of D4. We proceed to show that every G-set X can be
partitioned into subsets of this type.

Let X be a G-set. For x;,x; € X, let x; ~ x, if and only if there exists g € G such that
gx1 = x,. Then ~ is an equivalence relation on X.

For each x € X, we have ex = x, so x ~ x and ~ is reflexive.

Suppose x; ~ x3, so gx; =x, for some g€ G. Then g‘lxz = g‘l(gx.) =
(g~'g)x; = ex; = x1, 50 x ~ x;, and ~ is symmetric.

Finally, if x; ~ x, and x, ~ x3, then g;x; = x; and g,x, = x3 for some g;, 8> € G.
Then (g281)x1 = g2(g1x1) = g2x2 = X3, S0 x; ~ x3 and ~ is transitive. *

Let X be a G-set. Each cell in the partition of the equivalence relation described in
Theorem 14.15 is an orbit in X under G. If x € X, the cell containing x is the orbit
of x. We let this cell be Gx. ]

The relationship between the orbits in X and the group structure of G lies at the
heart of many applications. The following theorem gives this relationship. Recall that
for a set X, we use |X| for the number of elements in X, and (G : H) is the index of a
subgroup H in a group G.

Let X be a G-set and let x € X. Then |Gx| = (G : Gy). If |G] is finite, then |Gx]| is a
divisor of |G].

We define a one-to-one map ¥ from Gx onto the collection of left cosets of G, in G.
Let x; € Gx. Then there exists g; € G such that g;x = x;. We define ¥(x;) to be the left
coset g1G; of G,. We must show that this map  is well defined, independent of the
choice of g1 € G such that g;x = x;. Suppose also that g;’x = x;. Then, gix = gi'x, so
gl_l(glx) = gl_l(gl’x), from which we deduce x = (gl_1 g1")x. Therefore gl_l g1’ € Gy, 50
g1’ € 81G,, and g,G, = g1'G,. Thus the map y is well defined.

To show the map ¥ is one-to-one, suppose xj,x; € Gx, and ¥ (x;) = ¥(x2). Then
there exist g, g2 € G such that x; = g;x,x; = g>x, and g, € g,G,. Then g, = g;g for
some g € Gy, S0 x; = g>x = g1(gx) = g1x = x;. Thus ¥ is one-to-one.

Finally, we show that each left coset of G, in G is of the form ¥ (x;) for some
x; € Gx. Let g1G, be a left coset. Then if g;x = x;, we have g1G, = ¥ (x;). Thus ¢
maps Gx one-to-one onto the collection of left cosets so |Gx| = (G : G,).

If |G| is finite, then the equation |G| = |G,|(G : Gy) shows that |Gx| = (G : Gy) is
a divisor of |G]|. *
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Let X be the D4-set in Example 14.9, with action table given by Table 14.11. With
G = Dy, we have Gy = {t, }. Since |G| = 8, we have |GO| = (G : Gy) = 4. From Table
14.11, we see that GO = {0, 1, 2, 3}, which indeed has four elements. A

We should remember not only the cardinality equation in Theorem 14.17 but also
that the elements of G carrying x into g\x are precisely the elements of the left coset
£1G,. Namely, if g € G,, then (g1g)x = g1(gx) = g1x. On the other hand, if g,x = g1x,
then gl_l(gzx) =xs0 (gl_'gz)x = x. Thus gl_lgz € G, 50 g2 € 81Gx.

Applications of G-Sets to Finite Groups

Theorem 14.17 is a very useful theorem in the study of finite groups. Suppose that X is
a G-set for a finite group G and we pick out one element from each orbit of X to make
the set S = {x1,xs,...,%;} where we indexed the elements of X so that if i <j, then
|Gx;| = |Gx;|. That is, we arrange by orbit size, largest first and smallest last. Every
element in X is in precisely one orbit, so

Xl =) 1Gxl. @

i=1

We let Xg = {x € X | gx = xfor all g € G}. That is, X¢ is the set of all elements of X
whose orbit size is 1. So by equation (1),

5
X = Xgl + ) _ 1Gxil @
i=1
where we simply place all the orbits with one element into X and we are left with s
orbits each containing at least two elements. Although Equation (2) is simply saying
that if you add up the sizes of all the orbits you account for all the elements of X, when
coupled with Theorem 14.17, it gives some very interesting results. We give a few in
the remainder of this section. In Section 17 we will use Equation 2 extensively to prove
the Sylow Theorems.
For the remainder of this section, we assume that p is a prime number.

Let G be a group with p” elements. If X is a G-set, then |X| = |Xg| mod p.

Using Equation 2,

s
IX| = [Xgl + ) _ 1Gxil.

i=1

Since for each i < s, |Gx;| > 2 and |Gx;| = (G : Gy,) is a divisor of |G| = p", by Theo-
s
rem 14.17 p divides each term in the sum Z |Gx;|. Thus |X| = |Xg| mod p. *

i=1
Knowing that k divides the order of a group is not sufficient information to assume that
the group has a subgroup of order k. For example, we saw that A4 has no subgroup of
order 6 and that in general, A, has no subgroup of index 2 if n > 4. On the positive side,
in Exercise 29 in Section 2, you were asked to show that if a group has an even number
of elements, then it has an element of order two. Theorem 14.20 generalizes this result
to show that if a prime number p divides the order of a group, then the group has an
element of order p. The proof of this theorem relies on Theorem 14.19.

(Cauchy’s Theorem) Let G be a group such that p divides the order of G. Then G has
an element of order p and therefore a subgroup of order p.
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We let

X = {(80,81,82,---»&p-1) | 80,81, - -, 8p—1 € Gand gog182...8p-1 = €}.

That is, X is the set of all p-tuples with entries in G so that when the entries are mul-
tiplied together (in order) their product is the identity e. Since the product is e, go =
(8182-..8p—1)"" and given any g1,82,...,8,-1 € G, by picking go = (2182.-.8p-1)""
we have an element in X. Thus |X| = |G|P~! and in particular, p divides the order of X
since p divides the order of G.

Suppose that (g0, 81, 82, - - - » 8p—1) € X. Since go = (8182 - . - gp—1)~", it follows that
(g1, 82 - - - 81, 80) is in X. Repeating this process, noting that g1 = (g2g3 . - - £p-180) !
we conclude that (g2, 83,84, -+ , 8p—1, 80, &1) € X. Continuing in this manner we have
that for any k € Z,,

(k> Bkt p15 8kty2s - - - » Bhpp—1) € X.
We check that this gives a group action of Z, on X. Let k € Z, and (go, 81, £2, - - -, 8p—1) €
X. Then
k(g0,81,82,- - - »8p—1) = (8k> Bk+p15 8ketyp2s - - - » Bk,pp-1) € X.

Since

0(g0, 81,82, - - -  8p—1) = (80,81, 82, - - - , §p—1) and

k(1(g0, 81,82, - - - » 8p—1)) = k(&1 81+,15 814,25 - - - » 81, (0—1)
= (Gt pls Bt pltpls - - - » Bktpltp(p—1))
= (k+p D(80,81,82,- - -, 8p-1)

this is indeed a group action.

By Theorem 14.19, 0 = |X| = |Xz,| mod p. The p-tuple (e, e,e,...,e) is in Xz,
because rearranging the entries does not change the p-tuple. Since Xz, contains at least
one element and p divides |Xz,|, Xz, must contain at least one element other than
(e, e,e,...,e). That element must have the form (@, a,aq,...,a) witha # e and @ =e.
So a has order p and the subgroup it generates is a subgroup of G with order p. L 4

A p-group is a group such that each element in the group has order a power of p. A
p-subgroup of a group is a subgroup that is a p-group. ]

The group D¢ is a 2-group since the order of any element of D¢ divides |D;g| = 32.
A

Using the Fundamental Theorem of Finitely Generated Abelian Groups, a finite abelian
group is a p-group if and only if it is isomorphic to

Zpr X Lz X Lprs X -+ + X Lpm.

This is because if there were a factor of the form Z, where g # p is a prime number
and s > 1, then there would be an element in G with order ¢* which is not a power of p.
In Exercise 30, you are asked to show that for G a finite group, G is a p-group if
and only if the order of G is a power of p.
The next theorem assures us that any finite p-group has a nontrivial normal sub-
group, namely the center of the group. A

Let G be a finite p-group. Then the center of G, Z(G), is not the trivial group.

We let X = G and we make X into a G-set using conjugation. That is, (g, a) = gag™".
Equation 2 states that 0 = |X| = |Xg| mod p. For all g € G, geg™! = e. So X has at
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least one element, namely e. Since the number of elements in Xz must be at least p,
there is an element a € X such that @ # e and gag~' = a for all g € G. Thus ga = ag
for all g € G, which says that a € Z(G). So Z(G) is not the trivial subgroup. *

When studying p-groups, the fact that the center is nontrivial is often very helpful. We
conclude this section with a theorem that illustrates the utility of Theorem 14.24.

Every group of order p? is abelian.

Let G be a group of order p? with center Z(G). By Theorem 14.24, Z(G) is not the
trivial group so it is either all of G or else it has order p. We wish to show that Z(G) = G
using proof by contradiction. So we assume that Z(G) has p elements. Since Z(G) is a
normal subgroup of G, we can form G/Z(G). The group G/Z(G) also has p elements
and so both Z(G) and G/Z(G) are cyclic. Let (@) = Z(G) and (bZ(G)) = G/Z(G). Let
%,y € G. Then x = b'd’ and y = b"a* for some integers i,j, r, s since the cosets of Z(G)
partition G. Then

xy = b'a'b'a* = b'bala*
since (a) is the center of G. So
xy =b"a’t = bba*al = Vabal = yx.
Since every element in G commutes with every other element, Z(G) = G, which con-

tradicts our assumption that the center has only p elements. So the center of G must be
G, which means that G is abelian. *

Since every group of order p? is abelian, the Fundamental Homomorphism Theorem
says that every group with p? elements is isomorphic to either Zy or Z,, x Zy. The two
groups of order 4 are Z4 and the Klein 4-group. The two groups of order 9 are Zy and
Z3 X Z;. A

m EXERCISES 14

Computations

In Exercises 1 through 3, let

X =1{0,1,2,3,50,51,52,53,m,my,dy,d2, C, Py, P, P, P3}

be the D4-set of Example 14.9. Find the following, where G = Dj4.

1

A VA W N

The fixed sets X, for each o € Dj.
. The isotropy subgroups Gy for each x € X, that is, Go, G1, - - - , Gp,, Gp;.
. The orbits in X under Dy.
. Theorem 14.24 states that every p-group has nontrivial center. Find the center of Dg.
. Find the center of D;.

. Let G =X = §3 and make X a G-set using conjugation. That is, (o', ) = o to . Find all the orbits of X
using this action. (Write permutations in disjoint cycle notation.)

. Let G = D4 and X be the set of all subgroups of D4 with order two. The set X is a G-set using conjugation,
*(c, H) = o Ho~!. Find all the orbits of this group action.

. Let G = U = {z € C| |z] = 1} be the circle group. Then X = C, the set of complex numbers, is a G-set with
group action given by complex number multiplication. That is, if z € U and w € C, *(z, w) = zw. Find all the
orbits of this action. Also, find X¢.
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9. Let G be a group of order 3 and suppose that |X| = 6. For each possible action of G on X, give a list of the
orbit sizes. List the orbit sizes from largest to smallest. (Recall that the orbits partition the set X.)

10. Let G be a group of order 9 and suppose that |X| = 10. For each possible action of G on X, give a list of the
orbit sizes. List the orbit sizes from largest to smallest.

11. Let G be a group of order 8 and suppose that |X| = 10. For each possible way to make X a G-set the orbits
partition X. For each possible action of G on X, give a list of the orbit sizes. List the orbit sizes from largest to
smallest.

Concepts

In Exercises 12 and 13, correct the definition of the italicized term without reference to the text, if correction is

needed, so that it is in a form acceptable for publication.

12. A group G acts faithfully on X if and only if gx = x implies that g = e.

13. A group G is transitive on a G-set X if and only if, for some g € G, gx can be every other x.

14. Let X be a G-set and let S C X. If Gs C S for all s € S, then S is a sub-G-set. Characterize a sub-G-set of a
G-set X in terms of orbits in X under G.

15. Characterize a transitive G-set in terms of its orbits.

16. Determine whether each of the following is true or false.

a. Every G-set is also a group.

b. Each element of a G-set is fixed by the identity of G.

c. If every element of a G-set is fixed by the same element g of G, then g must be the identity e.

d. Let X be a G-set with x1,x2 € X and g € G. If gx; = gx3, then x1 = x2.

e. Let X be a G-set with x € X and g1, g2 € G. If g1x = gox, then g; = g».

f. Each orbit of a G-set X is a transitive sub-G-set. (See Exercise 14.)

g. Let X be a G-set and let H < G. Then X can be regarded in a natural way as an H-set.

h. With reference to (g), the orbits in X under H are the same as the orbits in X under G.

i. If X is a G-set, then each element of G acts as a permutation of X.

j- Let X be a G-set and let x € X. If G is finite, then |G| = |Gx| - |Gx|.

Let X and Y be G-sets with the same group G. An isomorphism between G-sets X and Yisamap¢ : X > Y

that is one-to-one, onto Y, and satisfies g¢(x) = ¢(gx) for all x € X and g € G. Two G-sets are isomorphic if
such an isomorphism between them exists. Let X be the Dy4-set of Example 14.9.

17

a. Find two distinct orbits of X that are isomorphic sub-Dj4-sets. (See Exercise 14.)

b. Show that the orbits {0, 1, 2, 3} and {sg, 51, 52, s3} are not isomorphic sub-Dy4-sets. [Hint: Find an element
of G that acts in an essentially different fashion on the two orbits.]

¢. Are the orbits you gave for your answer to part (a) the only two different isomorphic sub-Dj4-sets of X?

18. Let X be the Ds-set in Example 14.9.

a. Does Dy act faithfully on X?
b. Find all orbits in X on which Dy acts faithfully as a sub-Dy4-set. (See Exercise 14.)

Theory

19. Let X be a G-set. Show that G acts faithfully on X if and only if no two distinct elements of G have the same
action on each element of X.

20. Let Xbea G-setandlet Y C X. Let Gy = {g € G| gy = y for all y € Y}. Show Gy is a subgroup of G, gener-
alizing Theorem 14.13.

21. Let G be the additive group of real numbers. Let the action of § € G on the real plane R? be given by rotating
the plane counterclockwise about the origin through 6 radians. Let P be a point other than the origin in the
plane.

a. Show R? is a G-set.
b. Describe geometrically the orbit containing P.
c. Find the group Gp.
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Exercises 22 through 25 show how all possible G-sets, up to isomorphism (see Exercise 17), can be formed from
the group G.

22,

23.

25.

26.
27.
. Repeat Exercise 26 for the group S3. List the elements of S3 in the order ¢, (1, 2, 3), (1, 3, 2), (2, 3), (1, 3),
29,
30.

31.

Let {X; |i € I} be a disjoint collection of sets, so X; N X; = @ for i # j. Let each X; be a G-set for the same
group G.

a. Show that ;. X; can be viewed in a natural way as a G-set, the union of the G-sets X;.

b. Show that every G-set X is the union of its orbits.

Let X be a transitive G-set, and let xo € X. Show that X is isomorphic (see Exercise 17) to the G-set L of all

left cosets of Gy, described in Example 14.8. [Hint: For x € X, suppose x = gxo, and define ¢ : X — L by
¢(x) = gGx,. Be sure to show ¢ is well defined!]

. Let X; for i € I be G-sets for the same group G, and suppose the sets X; are not necessarily disjoint. Let

X] = {(x,) | x € X;} for each i € I. Then the sets X are disjoint, and each can still be regarded as a G-set in

an obvious way. (The elements of X; have simply been tagged by i to distinguish them from the elements of

X; for i # j.) The G-set | J;,X is the disjoint union of the G-sets X;. Using Exercises 22 and 23, show that

every G-set is isomorphic to a disjoint union of left coset G-sets, as described in Example 14.12.

The preceding exercises show that every G-set X is isomorphic to a disjoint union of left coset G-sets. The

question then arises whether left coset G-sets of distinct subgroups H and K of G can themselves be isomor-

phic. Note that the map defined in the hint of Exercise 23 depends on the choice of xy as “base point.” If xg is

replaced by goxo and if Gy, # Gg,x, then the collections Ly of left cosets of H = Gy, and Lk of left cosets of

K = Gg,x, form distinct G-sets that must be isomorphic, since both Ly and Lk are isomorphic to X.

a. Let X be a transitive G-set and let xg € X and go € G. If H = Gy, describe K = Gy, in terms of H
and 80-

b. Based on part (a), conjecture conditions on subgroups H and K of G such that the left coset G-sets of H
and K are isomorphic.

¢. Prove your conjecture in part (b).

Up to isomorphism, how many transitive Z-sets X are there? (Use the preceding exercises.) Give an example

of each isomorphism type, listing an action table of each as in Table 14.11. Take lowercase names a, b, ¢, and

so on for the elements in the set X.

Repeat Exercise 26 for the group Zg.

(1,2).

Prove that if G is a group of order p®, where p is a prime number, then |Z(G)| is either p or p3. Give an example
where |Z(G)| = p and an example where |Z(G)| = p3‘

Let p be a prime number. Prove that a finite group G is a p-group if and only if |G| = p”" for some integer
n=>0.

Let G be a group that acts on X = {H | H < G} by conjugation. That is, g + H = gHg!. State and prove an
equivalent condition for a subgroup H < G to be a normal subgroup of G in terms of

a. G, the isotropy subgroup of H.

b. GH, the orbit of H.

SECTION 15 TAPPLICATIONS OF G-SETS TO COUNTING

This section presents an application of our work with G-sets to counting. Suppose, for
example, we wish to count how many distinguishable ways the six faces of a cube can
be marked with from one to six dots to form a die. The standard die is marked so that
when placed on a table with the 1 on the bottom and the 2 toward the front, the 6 is on
top, the 3 on the left, the 4 on the right, and the 5 on the back. Of course, other ways of
marking the cube to give a distinguishably different die are possible.

T This section is not used in the remainder of the text.
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Let us distinguish between the faces of the cube for the moment and call them the
bottom, top, left, right, front, and back. Then the bottom can have any one of six marks
from one dot to six dots, the top any one of the five remaining marks, and so on. There
are 6! = 720 ways the cube faces can be marked in all. Some markings yield the same
die as others, in the sense that one marking can be carried into another by a rotation
of the marked cube. For example, if the standard die described above is rotated 90°
counterclockwise as we look down on it, then 3 will be on the front face rather than 2,
but it is the same die.

There are 24 possible positions of a cube on a table, for any one of six faces can be
placed down, and then any one of four to the front, giving 6 - 4 = 24 possible positions.
Any position can be achieved from any other by a rotation of the die. These rotations
form a group G, which is isomorphic to a subgroup of Sg. We let X be the 720 possible
ways of marking the cube and let G act on X by rotation of the cube. We consider
two markings to give the same die if one can be carried into the other under action by
an element of G, that is, by rotating the cube. In other words, we consider each orbit
in X under G to correspond to a single die, and different orbits to give different dice.
The determination of the number of distinguishable dice thus leads to the question of
determining the number of orbits under G in a G-set X.

The following theorem gives a tool for determining the number of orbits in a G-set
X under G. Recall that for each g € G we let X, be the set of elements of X fixed by g, so
that X, = {x € X | gx = x}. Recall also that for each x € X, we let G, = {g € G| gx =
x}, and Gx is the orbit of x under G.

(Burnside’s Formula) Let G be a finite group and X a finite G-set. If r is the number
of orbits in X under G,
re1Gl =) Xl m

geG

We consider all pairs (g, x) where gx = x, and let N be the number of such pairs. For
each g € G there are |X,| pairs having g as first member. Thus,

N=>"1Xl. 2

g€G

On the other hand, for each x € X there are |G,| pairs having x as second member. Thus

we also have
N=Y G-

xeX

By Theorem 14.17 we have |Gx| = (G : G,). But we know that (G : G,) = |G|/|G;|, so
we obtain |G,| = |G|/|Gx|. Then

N=2 |fl| (g ﬁ) @

Now 1/|Gx]| has the same value for all x in the same orbit, and if we let O be any orbit,
then

|Gx| - Z o =" @

Substituting (4) in (3), we obtaln
= |G| (number of orbits in X under G) = |G| - r. o)
Comparison of Eq. 2 and Eq. 5 gives Eq. 1. *
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If G is a finite group and X is a finite G-set, then

1
(number of orbits in X under G) = ﬁ - gEZG [Xgl.

The proof of this corollary follows immediately from the preceding theorem. *

Let us continue our computation of the number of distinguishable dice as our first
example.

We let X be the set of 720 different markings of faces of a cube using from one to six
dots. Let G be the group of 24 rotations of the cube as discussed above. We saw that
the number of distinguishable dice is the number of orbits in X under G. Now |G| = 24.
For g € G where g # e, we have |X,| = 0, because any rotation other than the identity
element changes any one of the 720 markings into a different one. However, |X,| = 720
since the identity element leaves all 720 markings fixed. Then by Corollary 15.2,

1
(number of orbits) = 7 720 = 30,

so there are 30 distinguishable dice. A

Of course, the number of distinguishable dice could be counted without using the
machinery of the preceding corollary, but by using elementary combinatorics as often
taught in a freshman finite math course. In marking a cube to make a die, we can,
by rotation if necessary, assume the face marked 1 is down. There are five choices
for the top (opposite) face. By rotating the die as we look down on it, any one of the
remaining four faces could be brought to the front position, so there are no different
choices involved for the front face. But with respect to the number on the front face,
there are 3 - 2 - 1 possibilities for the remaining three side faces. Thus there are 5 -3 -
2 - 1 = 30 possibilities in all.

The next two examples appear in some finite math texts and are easy to solve by
elementary means. We use Corollary 15.2 so that we have more practice thinking in
terms of orbits.

How many distinguishable ways can seven people be seated at a round table, where
there is no distinguishable “head” to the table? Of course there are 7! ways to assign
people to the different chairs. We take X to be the 7! possible assignments. A rotation of
people achieved by asking each person to move one place to the right results in the same
arrangement. Such a rotation generates a cyclic group G of order 7, which we consider
to act on X in the obvious way. Again, only the identity e leaves any arrangement fixed,
and it leaves all 7! arrangements fixed. By Corollary 15.2

1
(number of orbits) = 7 7! = 6! = 720. A

How many distinguishable necklaces (with no clasp) can be made using seven different-
colored beads of the same size? Unlike the table in Example 15.4, the necklace can be
turned over as well as rotated. Thus we consider the full dihedral group D; of order
2.7 = 14 as acting on the set X of 7! possibilities. Then the number of distinguishable
necklaces is

1
(number of orbits) = ° 7! = 360. A

In using Corollary 15.2, we have to compute |G| and |X,| for each g € G. In the
examples and the exercises, |G| will pose no real problem. Let us give an example
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where |X,| is not as trivial to compute as in the preceding examples. We will continue
to assume knowledge of very elementary combinatorics.

Let us find the number of distinguishable ways the edges of an equilateral triangle can
be painted if four different colors of paint are available, assuming only one color is used
on each edge, and the same color may be used on different edges.

Of course there are 4> = 64 ways of painting the edges in all, since each of the three
edges may be any one of four colors. We consider X to be the set of these 64 possible
painted triangles. The group G acting on X is the group of symmetries of the triangle,
which is isomorphic to 3 and which we consider to be $3. We need to compute |X,| for
each of the six elements g in S3.

1X,| = 64 Every painted triangle is fixed by i.

[Xa23)| =4 To be invariant under (1,2,3) all edges must be the
same color, and there are 4 possible colors.

[Xa32| =4 Same reason as for (1,2,3).

[Xa2)| =16 The edges that are interchanged must be the same

color (4 possibilities) and the other edge may
also be any of the colors (times 4 possibilities).

[Xe3! = 1Xa3| =16 Same reason as for (1,2).

Then
D Xl =64+4+4+16+16+ 16 = 120.
8€S3
Thus
1
(number of orbits) = r 120 = 20,
and there are 20 distinguishable painted triangles. A

We repeat Example 15.6 with the assumption that a different color is used on each edge.
The number of possible ways of painting the edges is then 4 - 3 - 2 = 24, and we let X be
the set of 24 possible painted triangles. Again, the group acting on X can be considered
to be S3. Since all edges are a different color, we see |X,| = 24 while |X,| = 0 for g # .
Thus

1
(number of orbits) = ra 24 =4,

so there are four distinguishable triangles. A

We will use group actions in Section 17 to develop the Sylow Theorems, which
give a tremendous amount of information about finite groups. In this section, we barely
scratch the surface of how to count using Burnside’s Formula. To explore this fascinat-
ing topic further, search the Internet using key words such as “cycle index” and “Polya’s
Enumeration Theorem.” Given a group action on a set, the cycle index is a polynomial
that can be computed by hand for small groups and by computer for larger groups.
Polya’s Enumeration Theorem then says that the number of different ways to color an
object can be computed by simply substituting certain values into the polynomial. It is
remarkable that counting the number of different colorings of geometric objects can be
elegantly reduced to algebra!
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Computations

In each of the following exercises use Corollary 15.2, even though the answer might be obtained by more elemen-
tary methods.

1.
2.
3.

Find the number of orbits in {1, 2, 3, 4, 5, 6, 7, 8} under the cyclic subgroup {((1, 3, 5, 6)) of Ss.
Find the number of orbits in {1, 2, 3, 4, 5, 6, 7, 8} under the subgroup of Sg generated by (1,3) and (2,4,7).

Find the number of distinguishable tetrahedral dice that can be made using one, two, three, and four dots on the
faces of a regular tetrahedron, rather than a cube.

. Wooden cubes of the same size are to be painted a different color on each face to make children’s blocks. How

many distinguishable blocks can be made if eight colors of paint are available?

. Answer Exercise 4 if colors may be repeated on different faces at will. [Hint: The 24 rotations of a cube consist

of the identity, 9 that leave a pair of opposite faces invariant, 8 that leave a pair of opposite vertices invariant,
and 6 leaving a pair of opposite edges invariant.]

. Each of the eight corners of a cube is to be tipped with one of four colors, each of which may be used on from

one to all eight corners. Find the number of distinguishable markings possible. (See the hint in Exercise 5.)

. Find the number of distinguishable ways the edges of a square of cardboard can be painted if six colors of paint

are available and

a. no color is used more than once.
b. the same color can be used on any number of edges.

. Consider six straight wires of equal lengths with ends soldered together to form edges of a regular tetrahedron.

Either a 50-ohm or 100-ohm resistor is to be inserted in the middle of each wire. Assume there are at least six
of each type of resistor available. How many essentially different wirings are possible?

. A rectangular prism 2 ft long with 1-ft square ends is to have each of its six faces painted with one of six

possible colors. How many distinguishable painted prisms are possible if

a. no color is to be repeated on different faces,
b. each color may be used on any number of faces?
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ISOMORPHISM THEOREMS

There are several theorems concerning isomorphic factor groups that are known as the
isomorphism theorems of group theory. The first of these is Theorem 12.14, which we
restate for easy reference. The theorem is diagrammed in Fig. 16.1.

¢
G ¢[G]
P r
4
7
7
Ve
7
Y 7 “ (isomorphism)
. 7z
4
e
. 7
GIK
16.1 Figure

(First Isomorphism Theorem) Let ¢ : G — G’ be a homomorphism with kernel X,
and let yx : G — G/K be the canonical homomorphism. There is a unique isomorphism
u: G/K — ¢[G] such that ¢(x) = u(yx(x)) foreach x € G. *

The lemma that follows will be of great aid in our proof and intuitive understanding
of the other two isomorphism theorems.

Let N be a normal subgroup of a group G and let ¥ : G — G/N be the canonical ho-
momorphism. Then the map ¢ from the set of normal subgroups of G containing N to
the set of normal subgroups of G/N given by ¢(L) = y[L] is one-to-one and onto.

Theorem 13.18 shows that if L is a normal subgroup of G containing N, then ¢(L) =
y[L] is a normal subgroup of G/N. Because N < L, for each x € L the entire coset xN
in G is contained in L. Thus by Theorem 10.17, y~'[¢(L)] = L. Consequently, if L
and M are normal subgroups of G, both containing N, and if ¢(L) = ¢(M) = H, then
L = y~![H] = M. Therefore ¢ is one-to-one. 145
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If H is a normal subgroup of G/N, then y~![H] is a normal subgroup of G by
Theorem 13.18. Because N € H and y~![{N}] = N, we see that N € y~'[H]. Then
¢(y~[H]) = y[y~'[H]] = H. This shows that ¢ is onto the set of normal subgroups
of G/N. *

If H and N are subgroups of a group G, then we let
HN ={hn|h € H,n € N}.

We define the join H vV N of H and N as the intersection of all subgroups of G that
contain H N; thus H Vv N is the smallest subgroup of G containing H N. Of course H V N
is also the smallest subgroup of G containing both H and N, since any such subgroup
must contain H N. In general, H N need not be a subgroup of G. However, we have the
following lemma.

If N is a normal subgroup of G, and if H is any subgroup of G, then HVN =HN =
NH. Furthermore, if H is also normal in G, then H N is normal in G.

We show that H N is a subgroup of G, from which H v N = H N follows at once. Let
hi1,hy € Handny,ny € N. Since N is a normal subgroup, we have njh, = hyn; for some
n3 € N. Then (hin1)(h2nz) = hi(mih2)na = hi(hans)ny = (hh2)(n3nz) € HN,so HN is
closed under the induced operation in G. Clearly e = eeisin HN.Forh € Handn € N,
we have (hn)~! = n~'h~' = h~!n4 for some n4 € N, since N is a normal subgroup.
Thus (hn)~! € HN, so HN < G. A similar argument shows that NH is a subgroup, so
NH=HVN=HN.

Now suppose that H is also normal in G, and let h € H,n € N, and g € G. Then
ghng™' = (ghg~")(gng™') € HN, so HN is indeed normal in G. *

We are now ready for the second isomorphism theorem.

(Second Isomorphism Theorem) Let H be a subgroup of G and let N be a normal
subgroup of G. Then (HN)/N ~ H/(H N N).

Since N < HN < G and N is a normal subgroup of G, N is a normal subgroup of
H N, which allows us to form the group H N/N. We define amap ¢ : H -~ HN/N by
¢(h) = hN. The map ¢ is a homomorphism since for any h;, h; € H,

$(hh2) = (hih2)N = (mN)(h2N) = ¢(h1)¢(h2).

The map ¢ maps onto HN/N since any element of HN/N can be written as hnN for
some h € H and n € N and hnN = hN = ¢(h). We now compute the kernel of ¢.

Ker(¢) ={he H|hWN =N} ={he H|lhe Ny=HNN

By the First Isomorphism Theorem, Theorem 16.2, the map u : H/(HNN) - HN/N
defined by u(h(H N N)) = kN is an isomorphism. *

Let G=ZXZxZ,H=7Z xZ x {0}, and N = {0} x Z x Z. Then clearly HN =
ZxZxZ and HNN = {0} x Z x {0}. We have (HN)/N ~Z and we also have
H/(HNN)~Z. A

Let G =Z, N = (n), and H = (h) where n and k are positive. The group Z is abelian,
so N is a normal subgroup of Z. Since Z is an additive group, we write N + H instead
of NH to avoid confusion. The group N + H = (gcd(n, h)) since anything in N + H
is a multiple of gcd(n, k) and ged(n,h) = xn + yh € N + H for some integers x and
y. Also, NN H = (lcm(n, h)) since a € NN H if and only if a is a multiple of both
n and h. The Second Isomorphism Theorem states that (N + H)/N = (gcd(n, h))/(n)
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is isomorphic with H/(N N H) = (h)/(lcm(n, h)). In Exercise 10, you will be asked to
prove that if a,b € Z* and a divides b, then |{a)/(b)| = b/a. Since (gcd(n, h))/(n) ~

(h)/(lcm(n, h)), we have " lem(n, )

ged(n, h) - h
nh = ged(n, h)lcm(n, h),

which provides a complicated way of proving a basic number theory fact! We conclude

that
(ged(n, b))/ (n) =~ (h)/(lem(n, h)) ~Z_=

=)

since a factor group of a cyclic group is cyclic. A

If H and K are two normal subgroups of G and K < H, then H/K is a normal
subgroup of G/K. The third isomorphism theorem concerns these groups.

(Third Isomorphism Theorem) Let H and K be normal subgroups of a group G with
K < H.Then G/H ~ (G/K)/(H/K).

Since X is a subgroup of H, for any g € G, gK C gH. That is, each left coset of X is
completely contained in one coset of H. We define ¢ : G/K — G/H by ¢(gK) = gH.
That is, we map a coset of K to the coset of H that contains it. Again, our strategy is
to use the First Isomorphism Theorem. The map ¢ is a homomorphism since for any
81,82 €G,

9((81K)(82K)) = ¢((8182)K) = (8182)H
= (@H)(g:H)
= $(g1K)p(g2K).
The map ¢ maps onto G/H since for any coset gH € G/H, ¢(gK) = gH. We now com-
pute the kernel of ¢.
Ker(¢) = {gK € G/K|gH = H)
— (gK € G/K|g € H)

= H/K.
By the First Isomorphism Theorem (G/K)/(H/K) is isomorphic with G/H and a for-
mula for an isomorphism u : (G/K)/(H/K) — G/H is w((gK)H/K) = gH. L 4

The formula for the isomorphism in the previous proof says that if we collapse the
subgroup K in G to form G/K and then collapse all the K cosets inside of H we have
the same group as collapsing the subgroup H. Figure 16.9 illustrates the situation. Think
of the large ellipse as being the group G. The cosets of H are the sets bounded by the
thick solid lines. The cosets of K are the smaller sets inside the cosets of H. The set G/H
consists of the cosets of H, which are represented by the four larger areas, each of which
is one point in G/H. On the other hand, G/K is represented by the twelve smaller sets
each collapsed to a point. Then (G/K)/(H/K) collapses each of the three small areas
in the same H coset to their common H coset. Either way, we end up collapsing each
H coset to a point.

It is sometimes difficult to think about what groups look like when they contain
more than one factor group in their definition. For example, what does an element of
(G/K)/(H/K) really look like? Keep in mind that a factor group has cosets of the sub-
group as elements. Example 16.10 is intended to clarify what the group (G/K)/(H/K)
looks like and to explicitly show what the isomorphism of Theorem 16.8 looks like.
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Let G =Zg, H=(2) ={0,2,4,6} < G, and K = (4) = {0,4} < H. We list the ele-
ments of each of the factor groups used in Theorem 16.8.

G/K = {{0,4},{1,5},{2,6},{3,7}}

G/H = {{0,2,4,6},{1,3,5,7}}

H/K = {{0,4},{2,6}}
Before listing the elements of (G/K)/(H/K) we note that any element of this group

would be a coset of the subgroup H/K < G/K. So each element is a set whose elements
are sets.

(G/K)/(H/K) = {{{0,4},{2,6}}, {{1,5}, {3, T}}}
Comparing G/H and (G/K)/(H/K), we see that each element in G/H is the union
of two cosets of K in G/K. Also, the isomorphism in Theorem 16.8 is the map ¢ :
(G/K)/(H/K) — G/H defined by
#({{0,4},{2,6})) = {0,4,2,6} and
o({{1,5},{3,}h = {1,5,3,7}.

So as illustrated in Figure 16.9, collapsing H to form G/H can be accomplished by first
collapsing K and then collapsing H/K. A

m EXERCISES 16

Computations

In using the three isomorphism theorems, it is often necessary to know the actual correspondence given by the
isomorphism and not just the fact that the groups are isomorphic. The first six exercises give us training for this.

1. Let ¢ : Z12 — Z3 be the homomorphism such that ¢(1) = 2.

a. Find the kernel X of ¢.

b. List the cosets in Z12/K, showing the elements in each coset.

c. Give the correspondence between Z;, /K and Zj3 given by the map u described in Theorem 16.2.

2. Let ¢ : Z1g — Z12 be the homomorphism where ¢(1) = 10.

a. Find the kernel X of ¢.

b. List the cosets in Z;3/K, showing the elements in each coset.

c¢. Find the group ¢[Z,;3].

d. Give the correspondence between Z;g/K and ¢[Z;3] given by the map w described in Theorem 16.2.
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. In the group Zy4, let H = (4) and N = (6).

a. List the elements in H N (which we might write H + N for these additive groups) and in H N N.
b. List the cosets in H N/N, showing the elements in each coset.

c. List the cosets in H/(H N N), showing the elements in each coset.

d. Give the correspondence between H/(H N N) and H N/N described in the proof of Theorem 16.5.

4. Repeat Exercise 3 for the dihedral group Dg with N = {t, u, p%, o2, p*, up*} and H = (p).
5. In the group G = Zy4, let H = (4) and K = (8).

a. List the cosets in G/H, showing the elements in each coset.

b. List the cosets in G/K, showing the elements in each coset.

c. List the cosets in H/K, showing the elements in each coset.

d. List the cosets in (G/K)/(H/K), showing the elements in each coset.

e. Give the correspondence between (G/K)/(H/K) and G/H described in the proof of Theorem 16.8.
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6. Repeat Exercise 5 for the dihedral group G = Dg, H = (p?) = {1, p% p*, p®}, and K = (p*) = {1, p*}.
Theory
7. Show directly from the definition of a normal subgroup that if H and N are subgroups of a group G, and N is

normal in G, then H N N is normal in H.

. Let H, K, and L be normal subgroups of G with H < K < L.LetA = G/H,B=K/H,and C = L/H.

a. Show that B and C are normal subgroups of A, and B < C.
b. To what factor group of G is (A/B)/(C/B) isomorphic?

Use one of the Isomorphism Theorems to prove that if a,b € Z* and a divides b, then |aZ/bZ| = b/a.

. Let K and L be normal subgroups of G with K v L = G, and K N L = {e}. Show that G/K ~ L and G/L ~ K.
10.
11.

Let G be a group with subgroups H* < H < G and K* < K < G. Prove that the sets H*(H N K*) N (H N K)

and (H* N K)(H N K*) are equal.

SECTION 17 SYLOW THEOREMS

The Fundamental Theorem for Finitely Generated Abelian Groups (Theorems 9.12 and
9.14) give us complete information about all finite abelian groups. The study of finite
nonabelian groups is much more complicated. The Sylow theorems give us some im-

portant information about them.

The Theorem of Lagrange says that if H is a subgroup of a finite group G, then the
order of H divides the order of G. The Fundamental Theorem for Finitely Generated
Abelian Groups implies that if k divides the order of a finite abelian group G, then G has
a subgroup of order k. The situation is different for nonabelian groups. Example 13.6
shows that although A4 has 12 elements, it has no subgroup of order 6. Furthermore,
for n > 5, A, can have no subgroup of index 2 since A, is simple and any subgroup of
index 2 is a normal subgroup. On the positive side, Cauchy’s theorem (14.20) says that
if the prime number p divides the order of a group G, then G has a subgroup of order p.
The Sylow theorems generalize Cauchy’s theorem to show that if p” divides the order of
G, then G has a subgroup of order p” as long as p is a prime number. Furthermore, Sy-
low’s theorems gives us information about relationships between these subgroups of G.
As we shall see, this information is very useful in the study of finite nonabelian groups.

Proofs of the Sylow theorems give us another application of action of a group on a
set described in Section 14. This time, the set itself is formed from the group; in some
instances the set is the group itself, sometimes it is a collection of cosets of a subgroup,

and sometimes it is a collection of subgroups.



Let G be a group, and let . be the collection of all subgroups of G. We make .
into a G-set by letting G act on .¥” by conjugation. That is, if H € .’ so H < G and
g € G, then g acting on H yields the conjugate subgroup gHg ™. (To avoid confusion,
we will never write this action as gH.) By Theorem 14.13 Gy = (g € G| gHg™! = H}
is a subgroup of G, which is called an isotropy subgroup. In Exercise 14 you will be
asked to show directly that Gy is a subgroup of G. Since Gy consists of all elements of
G that leave H invariant under conjugation, Gy is the largest subgroup of G having H

The subgroup Gy just discussed is the normalizer of H in G and will be denoted N[H]
from now on. a

In the proof of the lemma that follows, we will use the fact that if H is a finite
subgroup of a group G, then g € N[H] if ghg™! € H for all k € H. To see this, note that
if gh1g~! = ghyg™', then h; = hy by cancellation in the group G. Thus the conjugation
map i, : H — H given by i (h) = ghg™! is one-to-one. Because |H| is finite, i, must

Let % be the set of left cosets of H in G, and let H act on .% by left translation, so that

Let us determine %y, that is, those left cosets that are fixed under action by all el-
ements of H. Now xH = h(xH) if and only if H = x~'hxH, or if and only if x"'hx € H.
Thus xH = h(xH) for all h € H if and only if x"'hx = x " 'h(x~')"! € H for all h € H,
or if and only if x~! € N[H] (see the comment before the lemma), or if and only if
x € N[H]. Thus the left cosets in %} are those contained in N[H]. The number of such

Since H is a p-group, it has order a power of p. Theorem 14.9 then tells us that
|.Z | = |-%£y| (mod p), that is, that (G : H) = (N[H] : H) (mod p). *
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as a normal subgroup.
17.1 Definition
then map H onto H, so gHg™! = H and g € N[H].
17.2 Lemma Let H be a p-subgroup of a finite group G. Then
(N[H] : H) = (G : H) (mod p).
Proof
h(xH) = (hx)H. Then .% becomes an H-set. Note that |.% | = (G : H).
cosets is (N[H] : H), so |.%y| = (N[H] : H).
17.3 Corollary Let H be a p-subgroup of a finite group G. If p divides (G : H), then N[H] # H.
Proof

It follows from Lemma 17.2 that p divides (N[H] : H), which must then be different
from 1. Thus H # N[H]. *

m HISTORICAL NOTE

he Sylow theorems are due to the Norwegian

mathematician Peter Ludvig Mejdell Sylow
(1832-1918), who published them in a brief pa-
per in 1872. Sylow stated the theorems in terms of
permutation groups (since the abstract definition of
a group had not yet been given). Georg Frobenius
re-proved the theorems for abstract groups in 1887,
even though he noted that in fact every group
can be considered as a permutation group (Cay-
ley’s theorem [Theorem 8.11]). Sylow himself

immediately applied the theorems to the question
of solving algebraic equations and showed that any
equation whose Galois group has order a power of
a prime p is solvable by radicals.

Sylow spent most of his professional life as a
high school teacher in Halden, Norway, and was
only appointed to a position at Christiana Univer-
sity in 1898. He devoted eight years of his life to
the project of editing the mathematical works of his
countryman Niels Henrik Abel.




17.4 Theorem

Proof

17.5 Definition

17.6 Theorem

Proof

17.7 Theorem

Proof

Section 17  Sylow Theorems 151

We are now ready for the first of the Sylow theorems, which asserts the existence
of prime-power subgroups of G for any prime power dividing |G]|.

(First Sylow Theorem) Let G be a finite group and let |G| = p"m where n > 1 and
where p does not divide m. Then

1. G contains a subgroup of order p’ for each i where 1 < i < n,

2. Every subgroup H of G of order p' is a normal subgroup of a subgroup of
order ptl for1 <i < n.

1. We know G contains a subgroup of order p by Cauchy’s theorem
(Theorem 14.20). We use an induction argument and show that the existence
of a subgroup of order p' for i < n implies the existence of a subgroup of
order p™*1. Let H be a subgroup of order p'. Since i < n, we see p divides
(G : H). By Lemma 17.2, we then know p divides (N[H] : H). Since H is a
normal subgroup of N[H], we can form N[H]/H, and we see that p divides
IN[H]/H|. By Cauchy’s theorem, the factor group N[H]/H has a subgroup K,
which is of order p. If y : N[H] — N[H]/H is the canonical homomorphism,
then y "![K] = {x € N[H]| y(x) € K} is a subgroup of N[H] and hence of G.
This subgroup contains H and is of order p*!.

2. We repeat the construction in part 1 and note that H < y ~![K] < N[H] where
|y~1[K]| = p*'. Since H is normal in N[H], it is of course normal in the
possibly smaller group y ~![K]. L 4

A Sylow p-subgroup P of a group G is a maximal p-subgroup of G, that is, a p-subgroup
contained in no larger p-subgroup. ]

Let G be a finite group, where |G| = p"m as in Theorem 17.4. The theorem shows
that the Sylow p-subgroups of G are precisely those subgroups of order p". If P is a
Sylow p-subgroup, every conjugate gPg~! of P is also a Sylow p-subgroup. The sec-
ond Sylow theorem states that every Sylow p-subgroup can be obtained from P in this
fashion; that is, any two Sylow p-subgroups are conjugate.

(Second Sylow Theorem) Let P; and P, be Sylow p-subgroups of a finite group G.
Then P; and P, are conjugate subgroups of G.

Here we will let one of the subgroups act on left cosets of the other, and use The-
orem 14.19. Let % be the collection of left cosets of Py, and let P, act on .% by
Y(xP1) = (yx)P; for y € P,. Then % is a Py-set. By Theorem 14.19, |%p,| = |.£ |
(mod p), and |.% | = (G: P) is not divisible by p, so | %p,| # 0. Let xP; € %p,. Then
yxP; = xP, for all y € P5, so x~'yxP, = P, for all y € P,. Thus x"'yx € P, for all
y € Py, 50 x~'P,x < Py. Since |P;| = |P,|, we must have P, = x~'P,x, so P; and P,
are indeed conjugate subgroups. L 4

The final Sylow theorem gives information on the number of Sylow p-subgroups.

(Third Sylow Theorem) If G is a finite group and p divides |G|, then the number of
Sylow p-subgroups is congruent to 1 modulo p and divides |G]|.

Let P be one Sylow p-subgroup of G. Let .# be the set of all Sylow p-subgroups and let
P act on .% by conjugation, so that x € P carries T € .% into xTx~'. By Theorem 14.19,
|| = || (mod p). Let us find .. If T € .5, then xTx~! = T for all x € P. Thus
P < NI[T]. Of course, T < N[T] also. Since P and T are both Sylow p-subgroups of G,
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they are also Sylow p-subgroups of N[T]. But then they are conjugate in N[7'] by The-
orem 17.6. Since T is a normal subgroup of N[T1], it is its only conjugate in N[T]. Thus
T = P. Then .% = {P}. Since |.¥’| = |.%| = 1 (mod p), we see the number of Sylow
p-subgroups is congruent to 1 modulo p.

Now let G act on .¥° by conjugation. Since all Sylow p-subgroups are conjugate,
there is only one orbit in .%” under G. If P € .7, then |.¥°| = |orbit of P| = (G : Gp) by
Theorem 14.17. (Gp is, in fact, the normalizer of P.) But (G : Gp) is a divisor of |G|, so
the number of Sylow p-subgroups divides |G|. L 2

Theorem 17.7 is really a bit better than it sounds. Let |G| = p"m where the
prime number p does not divide m and suppose that G contains k Sylow p-subgroups.
Then Theorem 17.7 says that k is equivalent to 1 modulo p and k divides |G|. Since
ged(k, p) = 1, k must divide m.

Applications of the Sylow Theorems
The Sylow 2-subgroups of D3 have order 2. Three Sylow 2-subgroups are

{tuh, {Lwe) {tLuo®

Notice that Theorem 17.7 says that the number k of Sylow 2-subgroups must be odd
and k must divide 6. However, by the observation above, k must divide 3. So in fact, the
three subgroups listed are all three of the subgroups of D3 having order 2. A

Let G be a group containing normal subgroups H and K such that H N K = {e} and
H Vv K = G. Then G is isomorphic to H x K. L 2

We start by showing that hk = kh for k € K and h € H. Consider the commutator
hkh~ k™" = (hkh~")k™! = h(kh"'k~"). Since H and K are normal subgroups of G,
the two groupings with parentheses show that hkh~'k™! is in both K and H. Since
K N H = {e}, we see that hkh~'k~! = e, so hk = kh.

Let ¢ : H x K — G be defined by ¢(h, k) = hk. Then

B((h, kYK, K)) = (hl', kK') = hi k!
= hkh'k = ¢(h, k)p(H', k),

0 ¢ is a homomorphism.

If ¢(h, k) = e, then hk = ¢, so h = k™', and both k and k are in H N K. Thus h =
k = e, so Ker(¢) = {(e, e)} and ¢ is one-to-one.

By Lemma 16.4, we know that HK = H v K, and H v K = G by hypothesis. Thus
¢isonto G,and H x K >~ G. L 2

We turn now to a discussion of whether there exist simple groups of certain orders. We
have seen that every group of prime order is simple. We also asserted that A, is simple
for n > 5 and that As is the smallest simple group that is not of prime order. There was
a famous conjecture of Burnside that every finite simple group of nonprime order must
be of even order. It was a triumph when this was proved by Thompson and Feit [21].

If p and g are distinct primes with p < g, then every group G of order pq has a single
subgroup of order ¢ and this subgroup is normal in G. Hence G is not simple. If g is not
congruent to 1 modulo p, then G is abelian and cyclic.

Theorems 17.4 and 17.7 tell us that G has a Sylow g-subgroup and that the number
of such subgroups is congruent to 1 modulo g and divides pg, and therefore must
divide p. Since p < g, the only possibility is the number 1. Thus there is only one Sylow
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g-subgroup Q of G. This group Q must be normal in G, for under an inner automorphism
it would be carried into a group of the same order, hence itself. Thus G is not simple.
Likewise, there is a Sylow p-subgroup P of G, and the number of these divides pq
and is congruent to 1 modulo p. This number must be either 1 or g. If g is not congruent
to 1 modulo p, then the number must be 1 and P is normal in G. Let us assume that
g # 1 (mod p). Since every element in Q other than e is of order g and every element in
P other than e is of order p, we have Q N P = {e}. Also Q Vv P must be a subgroup of G
properly containing Q and of order dividing pg. Hence Q vV P = G and by Lemma 17.9
is isomorphic to Q x P or Z, x Zj. Thus G is abelian and cyclic. *

Recall that if p is a prime number, then up to isomorphism there is only one group of
order p and it is cyclic. Theorem 17.10 shows that there are many nonprime numbers
n such that every group of order n is cyclic. Since 5 is not equivalent to 1 modulo 3,
by Theorem 17.10, every group of order 15 is cyclic. Exercise 33 shows that 15 is the
smallest composite number with this property. A

We need another lemma for some of the counting arguments that follow.

If H and X are finite subgroups of a group G, then

(HIKT)

|HK| = —— 0
[HNK|

Let
h(HNK),hhy(HNK),hs(HNK),...,h(HNK)
be the left cosets of H N K in H with each coset listed exactly once. We let
S={hi,h2,h3,...,h},
which includes exactly one element from each left coset of H N K in H. So
__H
[HNK|

Let f: S x K — HK be defined by f(h;, k) = h;k. We show that f is one-to-one and
onto.

Suppose that hkk € HK. Then k € H is in some left coset of H N K, so h € h;(H N K)
for some A; € S. We have that h = h;x for some x € H N K. Let k; = xk. Then (h;, k) €
S x K and

ISI

[f(hi, k1) = hiky = hixk = hk.

Thus f is onto.

We now show that f is one-to-one. Suppose that f(h;, k) = f(h;, k1). So hik = hk,.
Then hj_lh,- = kik~! € HN K. But this implies that #; and h; are in the same left coset
of HN K, so h; = h;. By cancellation, k = k; and f is one-to-one.

Since there is a one-to-one and onto function f : § x K — HK, we have

|HK| = |S||K]
- _Hl
|[HNK|
_ (HD(K)
[HNK|

K]
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Lemma 17.12 is another result that counts something, so do not underestimate it.
The lemma will be used in the following way: A finite group G cannot have subgroups
H and K that are too large with intersections that are too small, or the order of HK would
have to exceed the order of G, which is impossible. For example, a group of order 24
cannot have two subgroups of orders 12 and 8 with an intersection of order 2.

The remainder of this section consists of several examples illustrating techniques of
proving that all groups of certain orders are abelian or that they have nontrivial proper
normal subgroups, that is, that they are not simple. We recall that a subgroup H of
index 2 in a finite group G is a normal subgroup. This is because the two left cosets of
H in G are H and the set of all elements in G that are not in H. But these are also the
right cosets, which says that H is a normal subgroup of G.

No group of order p” for r > 1 is simple, where p is a prime. For by Theorem 17.4 such
a group G contains a subgroup of order p"~! normal in a subgroup of order p’, which
must be all of G. Thus a group of order 16 is not simple; it has a normal subgroup of
order 8. A

No group of order 20 is simple, for such a group G contains Sylow 5-subgroups in num-
ber congruent to 1 modulo 5 and a divisor of 4, hence only 1. This Sylow 5-subgroup is
then normal, since all conjugates of it must be itself. A

No group of order 30 is simple. We have seen that if there is only one Sylow p-subgroup
for some prime p dividing 30, we are done. By Theorem 17.7 the possibilities for the
number of Sylow 5-subgroups are 1 or 6, and those for Sylow 3-subgroups are 1 or 10.
But if G has six Sylow 5-subgroups, then the intersection of any two is a subgroup of
each of order dividing 5, and hence just {e}. Thus each contains 4 elements of order 5
that are in none of the others. Hence G must contain 24 elements of order 5. Similarly,
if G has 10 Sylow 3-subgroups, it has at least 20 elements of order 3. The two types
of Sylow subgroups together would require at least 44 elements in G. Thus there is a
normal subgroup either of order 5 or of order 3. A

No group of order 48 is simple. Indeed, we shall show that a group G of order 48 has
a normal subgroup of either order 16 or order 8. By Theorem 17.7 G has either one or
three Sylow 2-subgroups of order 16. If there is only one subgroup of order 16, it is
normal in G, by now a familiar argument.

Suppose that there are three subgroups of order 16, and let H and K be two of them.
Then H N K must be of order 8, for if H N K were of order < 4, then by Lemma 17.12
HK would have at least (16)(16)/4 = 64 elements, contradicting the fact that G has
only 48 elements. Therefore, H N K is normal in both H and K (being of index 2, or by
Theorem 17.4). Hence the normalizer of H N K contains both H and K and must have
order a multiple >1 of 16 and a divisor of 48, therefore 48. Thus H N K must be normal
in G. A

No group of order 36 is simple. Such a group G has either one or four subgroups of
order 9. If there is only one such subgroup, it is normal in G. If there are four such
subgroups, let H and K be two of them. As in Example 17.16, H N K must have at
least 3 elements, or HK would have to have 81 elements, which is impossible. Thus the
normalizer of H N K has as order a multiple of >1 of 9 and a divisor of 36; hence the
order must be either 18 or 36. If the order is 18, the normalizer is then of index 2 and
therefore is normal in G. If the order is 36, then H N K is normal in G. A

We show every group of order 255 = (3)(5)(17) is abelian (hence cyclic by the Funda-
mental Theorem 9.12 and not simple, since 255 is not a prime). By Theorem 17.7 such
a group G has only one subgroup H of order 17. Then G/H has order 15 and is abelian
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by Theorem 17.10. By Theorem 13.22, we see that the commutator subgroup C of G
is contained in H. Thus as a subgroup of H, C has either order 1 or 17. Theorem 17.7
also shows that G has either 1 or 85 subgroups of order 3 and either 1 or 51 subgroups
of order 5. However, 85 subgroups of order 3 would require 170 elements of order 3,
and 51 subgroups of order 5 would require 204 elements of order 5 in G; both together
would then require 375 elements in G, which is impossible. Hence there is a subgroup
K having either order 3 or order 5 and normal in G. Then G/K has either order (5)(17)
or order (3)(17), and in either case Theorem 17.10 shows that G/K is abelian. Thus
C < K and has order either 3, 5, or 1. Since C < H showed that C has order 17 or 1, we
conclude that C has order 1. Hence C = {e}, and G/C ~ G is abelian. The Fundamental
Theorem 9.12 then shows that G is cyclic. A

m EXERCISES 17

Computations

In Exercises 1 through 4, determine the values of n; that make each statement true.

1.
2.
3.

4.

5.
6.
7.
8.

A Sylow 3-subgroup of a group of order 12 has order n;p.
A Sylow 3-subgroup of a group of order 54 has order n;.

A group of order 24 must have either n; or ny Sylow 2-subgroups. (Use only the information given in
Theorem 17.7.)

A group of order 255 = (3)(5)(17) must have either n; or ny Sylow 3-subgroups and n3 or ns Sylow
5-subgroups. (Use only the information given in Theorem 17.7.)

Find all Sylow 3-subgroups of S4 and demonstrate that they are all conjugate.
Find two Sylow 2-subgroups of S4 and show that they are conjugate.
Determine for which n < 20 any group of order n is abelian.

Determine for which n < 20 any group of order n is cyclic.

Concepts

In Exercises 9 through 11, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

9.
10.

11.

12.

Let p be a prime. A p-group is a group with the property that every element has order p.

The normalizer N[H] of a subgroup H of a group G is the set of all inner automorphisms that carry H onto
itself.

Let G be a group whose order is divisible by a prime p. The Sylow p-subgroup of a group is the largest
subgroup P of G with the property that P has some power of p as its order.

Determine whether each of the following is true or false.

a. Any two Sylow p-subgroups of a finite group are conjugate.

b. Theorem 17.7 shows that a group of order 15 has only one Sylow 5-subgroup.

¢. Every Sylow p-subgroup of a finite group has order a power of p.

d. Every p-subgroup of every finite group is a Sylow p-subgroup.

e. Every finite abelian group has exactly one Sylow p-subgroup for each prime p dividing the order of G.

f. The normalizer in G of a subgroup H of G is always a normal subgroup of G.

g. If H is a subgroup of G, then H is always a normal subgroup of N[H].

h. A Sylow p-subgroup of a finite group G is normal in G if and only if it is the only Sylow p-subgroup of G.
i. If G is an abelian group and H is a subgroup of G, then N[H] = H.

j- A group of prime-power order p” has no Sylow p-subgroup.
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Determine whether each of the following is true or false.

a. Every group of order 159 is cyclic.

b. Every group of order 102 has a nontrivial proper normal subgroup.

c. Every group of order p? is abelian, assuming that p is a prime number.
d. There is a simple group of order 1128.

e. It would be quite tedious to show that no group of nonprime order between 60 and 168 is simple by the
methods illustrated in the text.

f. No group of order 21 is simple.

g. Every group of 125 elements has at least 5 elements that commute with every element in the group.
h. Every group of order 42 has a normal subgroup of order 7.

i. Every group of order 42 has a normal subgroup of order 3.

j- The only simple groups are the groups Z, and A,, where p is a prime and n > 4.

Theory

14.

15.

16.
17.

18.

19.
20.
21.
22,
23.

24,

25.
26.
27.
28.

29.
30.

31

32.

33.

Let H be a subgroup of a group G. Show that Gy = {g € G| gHg~! = H} is a subgroup of G without using
Theorem 14.13.

Let G be a finite group and let primes p and g # p divide |G|. Prove that if G has precisely one proper Sylow
p-subgroup, it is a normal subgroup, so G is not simple.

Show that every group of order 45 has a normal subgroup of order 9.

Let G be a finite group and let p be a prime dividing |G|. Let P be a Sylow p-subgroup of G. Show that
NINI[P]] = N[P]. [Hint: Argue that P is the only Sylow p-subgroup of N[N[P]], and use Theorem 17.6.]

Let G be a finite group and let a prime p divide |G|. Let P be a Sylow p-subgroup of G and let H be any
p-subgroup of G. Show there exists g € G such that gHg™! < P.

Show that every group of order (35)° has a normal subgroup of order 125.

Show that there are no simple groups of order 255 = (3)(5)(17).

Show that there are no simple groups of order p”m, where p is a prime, r is a positive integer, and m < p.
Prove that all simple groups of order at most 20 are cyclic.

Let p be a prime. Show that a finite group of order p” contains normal subgroups H; for 0 < i < n such that
|H;| = p’ and H; < H;y for O < i < n. [Hint: See Theorem 14.24.]

Let G be a finite group and let P be a normal p-subgroup of G. Show that P is contained in every Sylow
p-subgroup of G.

Prove that if p > 3 is a prime number and k > 1, then any group G of order 2p* is not simple.
Prove that every group of order (5)(7)(47) is abelian and cyclic.
Prove that no group of order 96 is simple.

Show that every group of order 30 contains a subgroup of order 15. [Hint: Use the last sentence in Exam-
ple 17.15 and go to the factor group.]

Prove that no group of order 160 is simple.

Let G be a finite group and suppose that for each k that divides |G|, G has at most one subgroup of order k.
Prove that G is cyclic.

Let G be a finite group. Use the group action of G on G given by conjugation, g * x = gxg~!, to prove the
formula |G| = |Z(G)| + n1 + n2 + - - - + ng, where Z(G) is the center of G and n1, na, . . ., ni are the orbit sizes
for the orbits containing at least two elements. This formula is called the class equation.

By arguments similar to those used in the examples of this section, convince yourself that the only simple
groups of order less than 60 are cyclic. You need not write out all the details.

Show that for every positive integer n < 15, if every group of order n is cyclic, then n is prime.
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SERIES OF GROUPS

Subnormal and Normal Series

This section is concerned with the notion of a series of a group G, which gives insight
into the structure of G. The results hold for both abelian and nonabelian groups. They
are not too important for finitely generated abelian groups because of the Fundamental
Theorem of Finitely Generated Abelian Groups. Many of our illustrations will be taken
from abelian groups, however, for ease of computation.

A subnormal (or subinvariant) series of a group G is a finite sequence Hy, H, - - - , Hy,
of subgroups of G such that H; < H;;; and H; is a normal subgroup of H;;; with
Hy = {e} and H, = G. A normal (or invariant) series of G is a finite sequence
Hy,H,,- -, H, of normal subgroups of G such that H; < H;,Hy = {e}, and H, = G.

[ ]

Note that for abelian groups the notions of subnormal and normal series coincide,
since every subgroup is normal. A normal series is always subnormal, but the converse
need not be true. We defined a subnormal series before a normal series, since the concept
of a subnormal series is more important for our work.

Two examples of normal series of Z under addition are
{0} <8Z <4Z <Z
and

{0} < 9Z < Z.

We let G = Dy, the dihedral group. The series

{t} < {uu} < {t,u, 0% 0%} < D4

is a subnormal series since each subgroup is normal in the one to its right. The subgroup
{1, 1} is not a normal subgroup of D since pup~' = up? ¢ {t, u}. So this series is a
subnormal series, but not a normal series. A

A subnormal (normal) series {K}} is a refinement of a subnormal (normal) series {H;}
of a group G if {H;} C {Kj}, that is, if each H; is one of the K;. ]
The series
{0} <72Z <24Z < 8Z < 4Z < Z
is a refinement of the series
{0} < 72Z < 8Z < Z.
Two new terms, 47 and 247, have been inserted. A

Of interest in studying the structure of G are the factor groups H;;1/H;. These are
defined for both normal and subnormal series, since H; is normal in H;; in either case.

Two subnormal (normal) series {H;} and {K;} of the same group G are isomorphic if
there is a one-to-one correspondence between the collections of factor groups {H;;/H;}
and {Kj1/K;} such that corresponding factor groups are isomorphic. ]
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Clearly, two isomorphic subnormal (normal) series must have the same number of
groups.

The two series of Zs,
{0} < (5) <Zys
and
{0} < (3) < Zss,
are isomorphic. Both Z;5/(5) and (3)/{0} are isomorphic to Zs, and Z,;s/(3) is isomor-
phic to (5)/{0}, or to Zj3. A

The Schreier Theorem

We proceed to prove that two subnormal series of a group G have isomorphic refine-
ments. This is a fundamental result in the theory of series. Although the proof is a little
technical, it is broken up into smaller pieces that make it easier to follow. Before starting
the proof, we give an example to illustrate the goal of our investigation.

Let us try to find isomorphic refinements of the series
{0} <8Z <4Z <Z
and
{0} <9Z <Z

given in Example 18.2. Consider the refinement

{0} <T2Z <8Z <4Z < Z
of {0} < 8Z < 4Z < Z and the refinement

{0} <T2Z < 18Z <9Z < Z

of {0} < 9Z < Z. In both cases the refinements have four factor groups isomorphic to
Z4,7Z,Zy, and 727 or Z. The order in which the factor groups occur is different to be
sure. A

We start with a rather technical lemma developed by Zassenhaus. This lemma is
sometimes called the butterfly lemma, since Fig. 18.9, which accompanies the lemma,
has a butterfly shape.

(Zassenhaus Lemma) Let H,K < G be subgroups and H* < H, K* < K be normal
subgroups of H and K, respectively. Then

1. H*(H N K*)is a normal subgroup of H*(H N K),

2. K*(H* NK) is a normal subgroup of K*(H N K), and

3. The factor groups H*(H N K)/H*(H N K*), K*(H N K)/K*(H* N K), and
(HNK)/[(H* N K)(H N K*)] are all isomorphic.

It may be helpful to follow along with Figure 18.9 to visualize the subgroups that we
refer to in the proof. Before beginning the proof of normality, we need to verify that
the sets involved are in fact subgroups of G. All three sets H*, H N K*, and HNK
are subgroups of H. Furthermore, H* is a normal subgroup of H, so by Lemma 16.4,
H*(H N K*) and H*(H N K) are subgroups of H. Thus H*(H N K*) and H*(H N K) are
also subgroups of G. Clearly, H*(H N K*) is a subgroup of H*(H N K).
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H'HNK) KHNK)

/

L= (H"NK)HN K"

H'NK HNK*

18.9 Figure

We now show that H*(H N K*) is a normal subgroup of H*(HNK). We let
we H*(HNK*) and y € H*(HNK). We need to verify that ywy~! € H*(H N K*).
By definition, w = h;x and y € hyg for some hy,h, € H*, x e HNK*, and g € HNK.
We write

ywy ! = hzghlxg_lhz_ !

= ha(ghig~")gxg™ 'y

= hzhggxg_lhz_ !
for some k3 € H* since H* is a normal subgroup of H. We note that 45 ! and hyhs
are both elements of H* < H*(H N K*). Furthermore gxg~' € K* since g € K and K*
is a normal subgroup of K. Also gxg~! € H since both g and x are elements of H.
Thus, gxrg~! € HN K* < K*(H N K*). So, ywy™! is the product of elements in the group
H*(H N K*), which implies that ywy~! € H*(H N K*). Thus we have shown Part 1 of
the Theorem.

We use the Second Isomorphism Theorem (16.5) to prove the third part of the
Lemma. Let N =H*(HNK*) and H' =HNK. So N’ is a normal subgroup of
H*(HNK) and H' is a subgroup of H*(H U K). By Lemma 16.4 N'H' is a group and

NH =H*HNK*)HNK)
=H*HNK).
The Second Isomorphism Theorem says that N'H' /N’ ~ H' /(H' N N’). We have
NH' /N = H*HNK)/H*HNK*)

and
H /(H NNy = (HNK)/H"HNK)NHNK)).

Exercise 11 in Section 16 shows that
H*(HNK*)N(HNK) = H* NKYHNK*).

Thus
H*(HNK)/(H*(HN K*)) ~ (HNK)/((H* N K)(HNK")).



160

Part IV

18.11 Theorem

Proof

Advanced Group Theory

By reversing the roles of H and K (as well as H* and K*), the proof given above
proves Part 2 as well as the other half of Part 3 of the Zassenhaus Lemma. L 2

(Schreier Theorem) Two subnormal (normal) series of a group G have isomorphic
refinements.

Let G be a group and let
{ey=Hy<Hy <H;<---<H,=G [0))
and
le}=Ko<Ki <Ky <---<Kn,=G ?)
be two subnormal series for G. For i where 0 < i < n — 1, form the chain of groups
H; = Hi(H;+1 N Ko) < Hi(Hi+1 N K1) < -+ < Hi(Hiv1 N Ky) = Hiya.

This inserts m — 1 not necessarily distinct groups between H; and H;;,. If we do this
for each i where 0 < i < n — 1 and let H;; = H;(H;;1 N K;), then we obtain the chain of
groups

{e} = Hoo < Hoy <Hoz < -+ = Hom-1 < Hip
<H,)<H2=<--<Hm1=<Hy

<H;) <Hy; <---<Hym1=<Hsp

IA

<Hp 11 SHy 125 SHpim1 SHp1m
=G. 3)
This chain (3) contains nm + 1 not necessarily distinct groups, and H;o = H; for each i.
By the Zassenhaus Lemma, chain (3) is a subnormal chain, that is, each group is normal
in the following group. This chain refines the series (1).
In a symmetric fashion, we set Kj; = Ki(K;y1 NH;) for 0 <j<m—1 and
0 < i < n. This gives a subnormal chain
{e} = Koo = Koy < Ko2 < -+ = Kou-1 =K1
<Ki12Kip=2--2Kijn1 2Ky

<K =K< 2Kn1 2K

IA

<Kn-1) S Kn-12 2 S Kp—1n-1 S Kp—tn
=G. @

This chain (4) contains mn + 1 not necessarily distinct groups, and K; = K; for each j.
This chain refines the series (2).
By the Zassenhaus Lemma 18.10, we have

Hy(Hi 0 Kj)/HilHin 0 K)) = Kj(Kj1 O Hig)/K(Kjr O H,

or
Hiji1/Hij >~ Kji1/K;i )

forO0 <i<n-—1and 0 <j<m— 1. The isomorphisms of relation (5) give a one-to-
one correspondence of isomorphic factor groups between the subnormal chains (3) and
(4). To verify this correspondence, note that H;o = H; and H;,, = H;;1, while Ko = K;
and K, = K;;,. Each chain in (3) and (4) contains a rectangular array of mn symbols <.
Each < gives rise to a factor group. The factor groups arising from the rth row of <’s
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in chain (3) correspond to the factor groups arising from the rth column of <’s in chain
(4). Deleting repeated groups from the chains in (3) and (4), we obtain subnormal series
of distinct groups that are isomorphic refinements of chains (1) and (2). This establishes
the theorem for subnormal series.

For normal series, where all H; and K; are normal in G, we merely observe that
all the groups H;; and K;; formed above are also normal in G, so the same proof
applies. This normality of H;; and K;; follows at once from the second assertion in
Lemma 16.4 and from the fact that intersections of normal subgroups of a group yield
normal subgroups.

The Jordan-Hoélder Theorem

‘We now come to the real meat of the theory.

A subnormal series {H;} of a group G is a compeosition series if all the factor groups
H;iy1/H; are simple. A normal series {H;} of G is a principal or chief series if all the
factor groups H;.1/H; are simple. ]

Note that for abelian groups the concepts of composition and principal series coin-
cide. Also, since every normal series is subnormal, every principal series is a composi-
tion series for any group, abelian or not.

We claim that Z has no composition (and also no principal) series. For if
{0y=Hy<Hy<---<H,1<H,=7Z

is a subnormal series, H, must be of the form rZ for some r € Z*. But then H,/H,
is isomorphic to rZ, which is infinite cyclic with many nontrivial proper normal sub-
groups, for example, 2rZ. Thus Z has no composition (and also no principal) series.

A

The series
{e} <A, < S,

for n > 5 is a composition series (and also a principal series) of S,,, because A,/{e} is
isomorphic to A,, which is simple for n > 5, and S, /A, is isomorphic to Z,, which is
simple. Likewise, the two series given in Example 18.7 are composition series (and also
principal series) of Z;s. They are isomorphic, as shown in that example. This illustrates
our main theorem, which will be stated shortly. A

Observe that by Theorem 13.20, H;,/H; is simple if and only if H; is a maximal
normal subgroup of H;yi. Thus for a composition series, each H; must be a maximal
normal subgroup of Hy1. To form a composition series of a group G, we just hunt for
a maximal normal subgroup H,_, of G, then for a maximal normal subgroup H,_
of H,—1, and so on. If this process terminates in a finite number of steps, we have a
composition series. Note that by Theorem 13.20, a composition series cannot have any
further refinement. To form a principal series, we have to hunt for a maximal normal
subgroup H,_, of G, then for a maximal normal subgroup H,_» of H,_, that is also
normal in G, and so on. The main theorem is as follows.

(Jordan-Hélder Theorem) Any two composition (principal) series of a group G are
isomorphic.

Let {H;} and {K;} be two composition (principal) series of G. By Theorem 18.11,
they have isomorphic refinements. But since all factor groups are already simple,
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Theorem 13.20 shows that neither series has any further refinement. Thus {H;} and {K;}
must already be isomorphic. *

For a finite group, we should regard a composition series as a type of factoriza-
tion of the group into simple factor groups, analogous to the factorization of a positive
integer into primes. In both cases, the factorization is unique, up to the order of the
factors.

18.16 Example We illustrate the analogy between factoring integers and composition series with an
example. Let n € Z*. We factor n into its prime factors n = p1pyps . . . p, where the
prime factors may be repeated and they are in any order. The series

{0} < (P1p2p3 - - Pu—1) < (P1P2P3 - Pu—2) < (P1P2P3 - Pi—3) < ++ < (p1) < Zy

is a composition series since the factor groups are isomorphic with Z,, , Zj,_,, Z

P> s
Zp,, which are all simple. For each choice of ordering the prime numbers p1,p2,. .., pi
we get a different composition series, but they are all isomorphic since the factor groups
are Zp,, Zp,, . . . , Zp, in some order. A

m HISTORICAL NOTE

his first appearance of what became the

Jordan—Holder theorem occurred in 1869 in
a commentary on the work of Galois by the
brilliant French algebraist Camille Jordan (1838-
1922). The context of its appearance is the
study of permutation groups associated with the
roots of polynomial equations. Jordan asserted
that even though the sequence of normal sub-
groups G,I,J,---of the group of the equation
is not necessarily unique, nevertheless the se-
quence of indices of this composition series is
unique. Jordan gave a proof in his monumen-
tal 1870 Treatise on Substitutions and Algebraic
Egquations. This latter work, though restricted to

what we now call permutation groups, remained
the standard treatise on group theory for many
years.

The Holder part of the theorem, that the se-
quence of factor groups in a composition series is
unique up to order, was due to Otto Holder (1859-
1937), who played a very important role in the
development of group theory once the completely
abstract definition of a group had been given.
Among his other contributions, he gave the first ab-
stract definition of a “factor group” and determined
the structure of all finite groups of square-free
order.

18.17 Theorem If G has a composition (principal) series, and if N is a proper normal subgroup of G,
then there exists a composition (principal) series containing N.

Proof The series

e} <N<G

is both a subnormal and a normal series. Since G has a composition series {H;}, then by
Theorem 18.11 there is a refinement of {¢} < N < G to a subnormal series isomorphic
to a refinement of {H;}. But as a composition series, {H;} can have no further refinement.
Thus {e¢} < N < G can be refined to a subnormal series all of whose factor groups are
simple, that is, to a composition series. A similar argument holds if we start with a
principal series {K;} of G. L 2

18.18 Example A composition (and also a principal) series of Z4 x Zg containing ((0, 1)) is

{(0,0)} < ((0,3)) < {(0, 1)) < (2) x (1) < (1) x (1) = Zy x Zo. A
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The next definition is basic to the characterization of those polynomial equations
whose solutions can be expressed in terms of radicals.

A group G is solvable if it has a composition series {H;} such that all factor groups
H;.,/H; are abelian. ]

By the Jordan—Holder theorem, we see that for a solvable group, every composition
series {H;} must have abelian factor groups H;;;/H;.

The group S3 is solvable, because the composition series
{e} <A3 < 83

has factor groups isomorphic to Z3 and Z,, which are abelian. The group Ss is not
solvable, for since As is simple, the series

{e} < As < S5

is a composition series, and As/{e}, which is isomorphic to As, is not abelian. This group
As of order 60 can be shown to be the smallest group that is not solvable. This fact is
closely connected with the fact that a polynomial equation of degree 5 is not in general
solvable by radicals, but a polynomial equation of degree < 4 is. A

The Ascending Central Series

We mention one subnormal series for a group G that can be formed using centers of
groups. Recall from Section 13 that the center Z(G) of a group G is defined by

Z(G)={z€ G|zg=gzforall g € G},

and that Z(G) is a normal subgroup of G. If we have the table for a finite group G, it is
easy to find the center. An element a is in the center of G if and only if the row with
header a and the column with header a list the elements of G in the same order.

Now let G be a group, and let Z(G) be the center of G. Since Z(G) is normal in G,
we can form the factor group G/Z(G) and find the center Z(G/Z(G)) of this factor group.
Since Z(G/Z(G)) is normal in G/Z(G), if y : G — G/Z(G) is the canonical map, then
by Theorem 13.18, ¥ ~'[Z(G/Z(G))] is a normal subgroup Z (G) of G. We can then form
the factor group G/Z;(G) and find its center, take (y,)~! of it to get Z»(G), and so on.

The series
e} =Z2(6G)=Zi(G)=Z(G) = ---

described in the preceding discussion is the ascending central series of the group G.
[ ]

For n > 3, the center of S, is just the identity ¢. Thus the ascending central series
of S, is

<=y =....

The center of the dihedral group Dy is {t, ?}. The factor group Dy/{t, p?} has order 4,
and each element has order 1 or 2, so Dy/{t, p?} is isomorphic with the Klein 4-group,
which is abelian. Therefore the center of Dy/{t, p?} is the whole group, and the central
series for Dy is

{}<{L,p?) <Dy <Dy <Ds<.... A



164

Part IV  Advanced Group Theory

m EXERCISES 18

Computations

In Exercises 1 through 5, give isomorphic refinements of the two series.

1.
. {0} < 60Z < 20Z < Z and {0} < 245Z < 49Z < Z

. {0} < (9) < Zss and {0} < (2) < Zss

. {0} < (9) < (3) < Z72 and {0} < (36) < (12) < Z7

. {(0,0)} < (60Z) x Z < (10Z) x Z < Z x Z and {(0,0)} < Z x (80Z) < Z x (20Z) < Z x Z
. Find all composition series of Zgg and show that they are isomorphic.

o 0N AN A WN

ok ke
NN =D

{0} < 10Z < Z and {0} < 25Z < Z

. Find all composition series of Z4g and show that they are isomorphic.
. Find all composition series of Zs x Zs.

. Find all composition series of S3 X Z.

. Find all composition series of Zy x Zs X Z7.

. Find the center of §3 x Zj4.

. Find the center of §3 x Dy.

. Find the ascending central series of S3 x Zj.

14.

Find the ascending central series of S3 x Djy.

Concepts

In Exercises 15 and 16, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

15.

16.
17.

18.
19.
20.

A composition series of a group G is a finite sequence
{ey=Hy<Hy  <Hy<---<H,_1<H,=G
of subgroups of G such that H; is a maximal normal subgroup of Hy fori =0,1,2,--- ,n— 1.
A solvable group is one that has a composition series of abelian groups.
Determine whether each of the following is true or false.
a. Every normal series is also subnormal.
b. Every subnormal series is also normal.
c. Every principal series is a composition series.
d. Every composition series is a principal series.
e. Every abelian group has exactly one composition series.
f. Every finite group has a composition series.
g. A group is solvable if and only if it has a composition series with simple factor groups.
h. §7 is a solvable group.

i. The Jordan—-Hdlder theorem has some similarity with the Fundamental Theorem of Arithmetic, which states
that every positive integer greater than 1 can be factored into a product of primes uniquely up to order.

j- Every finite group of prime order is solvable.

Find a composition series of §3 x 3. Is §3 x S3 solvable?

Is the dihedral group D4 solvable?

Let G be Z3e. Refer to the proof of Theorem 18.11. Let the subnormal series (1) be
{0} < (12) < 3) <Zs36

and let the subnormal series (2) be

{0} < (18) < Zszs.
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Find chains (3) and (4) and exhibit the isomorphic factor groups as described in the proof. Write chains (3)
and (4) in the rectangular array shown in the text.

21. Repeat Exercise 20 for the group Zy4 with the subnormal series (1)

0} < (12) < (4) < Zn4
and (2)
{0} < (6) < (3) < Zoa.

Theory
22. Let H*, H, and K be subgroups of G with H* normal in H. Show that H* N K is normal in H N K.
23. Show that if

29

31

Hy={e}<Hi<Hy<---<H,=G
is a subnormal (normal) series for a group G, and if H;;/H; is of finite order s;+1, then G is of finite order
5182 - - Sn.

Show that an infinite abelian group can have no composition series. [Hint: Use Exercise 23, together with the
fact that an infinite abelian group always has a proper nontrivial subgroup.]

Show that a finite direct product of solvable groups is solvable.
Show that if H < G is a normal subgroup, H is solvable, and G/H is solvable, then G is solvable.
Show that for n > 3, D,, is solvable.

Show that a subgroup K of a solvable group G is solvable. [Hint: Let Hy ={e} <Hi <---<H,=Gbea
composition series for G. Show that the distinct groups among K N H; for i = 0,-- - ,n form a composition
series for K. Observe that

(K N H;)/(K N Hi_1) ~ [Hi_1(K N H)/[Hi_1],
by Theorem 16.5, with H = K N H; and N = H;_1, and that H;_1(K N H;) < H;.]

Let Hyp = {e} < H1 < --- < Hy, = G be a composition series for a group G. Let N be a normal subgroup of
G, and suppose that N is a simple group. Show that the distinct groups among Hy, H;N fori =0,--- ,n also
form a composition series for G. [Hint: H;N is a group by Lemma 16.4. Show that H;_ N is normal in H;N.
By Theorem 16.5

(H;N)/(H;-1N) ~ H;/[H; N (H;—1N)],
and the latter group is isomorphic to
[Hi/Hi-11/[(H; N (H;-1N))/Hi-1],
by Theorem 16.8. But H;/H;_, is simple.]

Let G be a group, and let Hy = {¢} < H; < --- < H, = G be a composition series for G. Let N be a normal
subgroup of G, and let ¥ : G — G/N be the canonical map. Show that the distinct groups among y [H;] for
i=0,---,n, form a composition series for G/N. [Hint: Observe that the map

¥ : HiN - y[H;]l/y[Hi-1]
defined by
Y (hin) = y(hin)y[H;_1]
is a homomorphism with kernel H;—N. By Theorem 16.2.
v[Hil/y[Hi-1] ~ (H;N)/(H;—1N).
Proceed via Theorem 16.5, as shown in the hint for Exercise 29.]

Prove that a homomorphic image of a solvable group is solvable. [Hint: Apply Exercise 30 to get a composition
series for the homomorphic image. The hints for Exercises 29 and 30 then show how the factor groups of this
composition series in the image look.]

32. Prove that a finite p-group is solvable.

33. Prove that a group G with 2"p* elements is solvable if p > 2" is a prime.
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FREE ABELIAN GROUPS

In this section we introduce the concept of free abelian groups and prove some re-
sults concerning them. The section concludes with a demonstration of the Fundamental
Theorem of Finitely Generated Abelian Groups (Theorem 9.12).

Free Abelian Groups

We should review the notions of a generating set for a group G and a finitely generated
group, as given in Section 7. In this section we shall deal exclusively with abelian groups
and use the standard additive notations as follows:

0 for the identity, + for the operation,
na=a+a+---+a
—_—————

n summands

fi z* .
—na = (—a)+(—a)+ -+ (—a) orneZ" andae G

n summands
0a = O for the first 0 in Z and the second in G.

We shall continue to use the symbol x for direct product of groups rather than change
to direct sum notation.

Notice that {(1, 0), (0, 1)} is a generating set for the group Z x Z since
(n,m) = n(1,0) + m(0, 1) for any (n,m) in Z x Z. This generating set has the property
that each element of Z x Z can be uniquely expressed in the form n(1,0) + m(0, 1).
That is, the coefficients n and m in Z are unique.

Let X be a subset of a nonzero abelian group G. The following conditions on X are
equivalent.

1. Each nonzero element a in G can be expressed uniquely (up to order of
summands) in the form a = nyx; + noxz + - - - + n,x, for n; # 0 in Z and
distinct x; in X.

2. X generates G, and njx; + nax; + - - - + n.x, = 0 for n; € Z and distinct
x; € Xifandonlyifny =ny=---=n,=0.

Suppose Condition 1 is true. Since G # {0}, we have X # {0}. It follows from 1 that
0 ¢ X, forif x; = 0 and x; # 0, then x; = x; + x;, which would contradict the uniqueness
of the expression for x;. From Condition 1, X generates G, and nyx; +naxa + -+ - +
nx, =0 if ny =ny; =--- = n, =0. Suppose that nyx; + nax; + - - - + n,x, = 0 with
some n; # 0; by dropping terms with zero coefficients and renumbering, we can assume
all n; # 0. Then

x1 =x1 + (mx; +npx + - -- +n,.x,)
=+ Dx;+nx+---+n.x,

which gives two ways of writing x; # 0, contradicting the uniqueness assumption in
Condition 1. Thus Condition 1 implies Condition 2.

We now show that Condition 2 implies Condition 1. Let a € G. Since X generates
G, we see a can be written in the form a = nyx; + nox; + - - - + n,x,. Suppose a has
another such expression in terms of elements of X. By using some zero coefficients
in the two expressions, we can assume they involve the same elements in X and are
of the form
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a=nxy +nyxy+---n.x

a=mx| +myxy+ - -mx,.
Subtracting, we obtain
0=(m —mp)x; + (n2 — ma)xs + - - - + (n, — my)x,,

so n; — m; = 0 by Condition 2, and n; = m; fori = 1,2, - - - , r. Thus the coefficients are
unique. L 2

An abelian group having a generating set X satisfying the conditions described in
Theorem 19.1 is a free abelian group, and X is a basis for the group. ]

The group Z x Z is free abelian and {(1, 0), (0, 1)} is a basis. Similarly, a basis for the
free abelian group Z x Z x Z is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and so on. Thus finite
direct products of the group Z with itself are free abelian groups. A

The group Z, is not free abelian, for nx = 0 for every x € Z,, and n # 0, which would
contradict Condition 2. A

From Example 19.4 it seems reasonable that if G is an abelian group with a nonzero
element of finite order, then G is not a free abelian group. Exercise 10 asks you to
provide a proof of this fact. However, there are other obstacles that prevent an abelian
group from being free. For example, no rational number other than 0 has finite order,
but Exercise 13 asks for a proof that Q is not a free abelian group.

Suppose a free abelian group G has a finite basis X = {x),x,--- ,x,}. Ifa € G and
a # 0, then a has a unique expression of the form

a=mx  +nmx;+---+nx, for n;€Z.

(Note that in the preceding expression for a, we included all elements x; of our finite
basis X, as opposed to the expression for a in Condition 1 of Theorem 19.1 where
the basis may be infinite. Thus in the preceding expression for ¢ we must allow the
possibility that some of the coefficients n; are zero, whereas in Condition 1 of Theorem
19.1, we specified that each n; # 0.)

We define

¢$:Go>ZLXZLX---X1ZL
[ ———
r factors
by ¢(a) = (n1,nz,--- ,n,) and ¢(0) = (0,0, - - - ,0). It is straightforward to check that

¢ is an isomorphism. We leave the details to the exercises (see Exercise 9) and state the
result as a theorem.

If G is a nonzero free abelian group with a basis of r elements, then G is isomorphic to
Z x Z x - -- x Z for r factors.

It is a fact that any two bases of a free abelian group G contain the same number of
elements. We shall prove this only if G has a finite basis, although it is also true if every
basis of G is infinite. The proof is really lovely; it gives an easy characterization of the
number of elements in a basis in terms of the size of a factor group.

Let G # {0} be a free abelian group with a finite basis. Then every basis of G is finite,
and all bases of G have the same number of elements.
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Let G have a basis {x;,x3,--- ,x;}. Then G is isomorphic to Z x Z x --- x Z for r
factors. Let 2G = {2g | g € G}. It is readily checked that 2G is a subgroup of G. Since
G~7Z x 7Z x --- x Zfor r factors, we have
G/2G>~(Z XZ X ---XZL)/2Z X 27 X - -- x 27)
222XZ2X~-~XZZ
for r factors. Thus |G/2G| =27, so the number of elements in any finite basis X is
log, |G/2G|. Thus any two finite bases have the same number of elements.

It remains to show that G cannot also have an infinite basis. Let Y be any basis for G,
and let {y;,y,, - - - ,ys} be distinct elements in Y. Let H be the subgroup of G generated
by {y1,¥2, - - ,¥s}, and let K be the subgroup of G generated by the remaining elements
of Y. It is readily checked that G ~ H x K, so

G/2G ~ (H x K)/(2H x 2K) ~ (H/2H) x (K/2K).
Since |[H/2H| = 2°, we see |G/2G| > 2°. Since we have |G/2G| = 2", we see thats < r.
Then Y cannot be an infinite set, for we could take s > r. <

If G is a free abelian group, the rank of G is the number of elements in a basis for G.
(All bases have the same number of elements.) |

Proof of the Fundamental Theorem

We shall prove the Invariant Factor version of the Fundamental Theorem (Theorem
9.14) by showing that any finitely generated abelian group is isomorphic to a factor
group of the form

ZXZx---xLAZ X dryZ X --- x dsZ x {0} x - - - x {O}),

where both “numerator” and “denominator” have n factors, and d; divides d,, which
divides ds - - -, which divides d;. The Prime Factor version, Theorem 9.12, will then
follow.

To show that G is isomorphic to such a factor group, we will show that there is a
homomorphism of Z x Z x - - - x Z onto G with kernel of the form d,Z x dyZ x - - - x
dsZ x {0} x - - - x {0}. The result will then follow by Theorem 12.14. The theorems that
follow give the details of the argument. Our purpose in these introductory paragraphs is
to let us see where we are going as we read what follows.

Let G be a finitely generated abelian group with generating set {a1,az, - - - ,an}. Let
P:ZXLx---xXxZ—>G
e ——
n factors

be defined by ¢(hy, ha,- -+, hy) = hia1 + hoar + - - - + hya,. Then ¢ is a homomor-
phism onto G.

From the meaning of h;a; for h; € Z and a; € G, we see at once that
Olhr, -+ b)) + (k- k)l = @y + k- By + k)
= +kar + -+ + (b + kn)an
= (ha +ka) + - - - + (haan + knay)
=mai+ -+ hpan) + (kiay + -+ - + knay)
= ¢k, kn) + P(h1, - -+ hy).

Since {ay, - - - , a,} generates G, clearly the homomorphism ¢ is onto G. *
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We now prove a “replacement property” that makes it possible for us to adjust a
basis.
If X = {x1,-- - ,x,} is a basis for a free abelian group G and ¢ € Z, then for i # j, the set
Y="{x1, -, %1% + X, Xjy1, -+, %)
is also a basis for G.
Since x; = (—)x; + (1)(x; + tx;), we see that x; can be recovered from Y, which thus
also generates G. Suppose

nxy + - -+ moixiog +ni(x + ) + nigaxig + - - +nx = 0.

Then

nmxy+---+m+ntx+---+nx+---+nx=0.
and since X is abasis,ny =---=n+nt=---=n;=-.- =n, = 0. Fromn; = 0 and
n; +njt =0, it follows that n; =0 also, son, =---=m=---=nj=---=n,=0,
and Condition 2 of Theorem 19.1 is satisfied. Thus Y is a basis. *

Abasis for Z x Zis {(1, 0), (0, 1)}. Another basis is {(1, 0), (4, 1)} for (4, 1) = 4(1,0) +
(0, 1). However, {(3,0), (0, 1)} is not a basis. For example, we cannot express (2, 0) in
the form n1(3,0) + n2(0, 1), for n,ny € Z. Here (3,0) = (1, 0) + 2(1, 0), and a multiple
of a basis element was added to iself, rather than to a different basis element. A

A free abelian group G of finite rank may have many bases. We show that if K < G,
then KX is also free abelian with rank not exceeding that of G. Equally important, there
exist bases of G and K nicely related to each other.

Let G be a nonzero free abelian group of finite rank n, and let K be a nonzero subgroup of
G. Then K is free abelian of rank s < n. Furthermore, there exists a basis {x;,x2, - -+ , x,}
for G and positive integers, dy,d,, - - - ,d; where d; divides di; fori=1,--- ,s—1,
such that {d)x,d>xs, - - - ,d;x;} is a basis for K.

‘We show that K has a basis of the described form, which will show that X is free abelian
of rank at most n. Suppose ¥ = {yi, - - - ,yn} is a basis for G. All nonzero elements in K

can be expressed in the form
kiyr + -+ + kuyn,

where some |k;| is nonzero. Among all bases Y for G, select one Y; that yields the
minimal such nonzero value |;| as all nonzero elements of K are written in terms of the
basis elements in Y). By renumbering the elements of Y; if necessary, we can assume
there is w; € K such that

wy =diy1 +koya + -+ + knyn

where d; > 0 and d, is the minimal attainable coefficient as just described. Using the
division algorithm, we write k; = dyg; + r; where 0 < r; < d; forj =2,--- ,n. Then

wi=di1+q2y2+ -+ guyn) +r2y2+ -+ Iayn. @)

Now let x; =y; + q2y2 + - - - + gnyn. By Theorem 19.9 {x;,y,,---,y,} is also a ba-
sis for G. From Eq. (1) and our choice of ¥; for minimal coefficient d;, we see that
rp=--+=r, =0.Thus dx; € K.
We now consider bases for G of the form {x;,y,,- - - ,y,}. Each element of K can
be expressed in the form
hixy +kays + - - - + kY.
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Since djx; € K, we can subtract a suitable multiple of d;x; and then using the mini-
mality of d; to see that £ is a multiple of d;, we see we actually have kyy, + - - - + kpyn
in K. Among all such bases {xi,y2, - - , y»}, we choose one Y, that leads to some k; # 0
of minimal magnitude. (It is possible all k; are always zero. In this case, K is generated
by dix) and we are done.) By renumbering the elements of ¥, we can assume that there
is wy € K such that

Wy =dyyr + -+ + knYn

where d, > 0 and d; is minimal as just described. Exactly as in the preceding paragraph,
we can modify our basis from Y, = {x1,y»,- - - ,y,} to a basis {x;,x2,y3,--- ,y.} for G
where dix; € K and dyx, € K. Writing d, = diq + r for 0 < r < d;, we see that {x; +
gx2,%2,¥3,-++ ,Yn} is a basis for G, and dyx; + dyxy = di(x; + gx2) + rx; is in K. By
our minimal choice of d;, we see r = 0, so d; divides d,.

We now consider all bases of the form {x;,x2,y3,--- ,y,} for G and examine el-
ements of K of the form ksy; + - - - + k,y,. The pattern is clear. The process contin-
ues until we obtain a basis {x),x2, -+ , X5, Ys+1, -+ ,¥n} Where the only element of K
of the form kgi1ys+1 + - - - + knyn is zero, that is, all k; are zero. We then let x4 =
Ys+1,°** »Xn = yn and obtain a basis for G of the form described in the statement of
Theorem 19.11. *

‘We now prove the Invariant Factor version of the Fundamental Theorem, Theorem
9.11. We restate it here for easy reference.

Every finitely generated abelian group is isomorphic to a group of the form
Ly X Ly X +++ X Ly X LXZL X -+ X 2,

where m; divides m;; fori=1,--- ,r— 1.
Furthermore, this representation is unique up to order of the factors.

For the purposes of this proof, it will be convenient to use as notations Z/1Z = Z/Z ~
Z; = {0}. Let G be finitely generated by r elements. Let F=Z x Z x --- x Z for n
factors. Consider the homomorphism ¢ : F — G of Theorem 19.8, and let K be the
kernel of this homomorphism. Then there is a basis for F of the form {x;, - - - , x,}, where
{dix1,-- - ,dsxs} is a basis for K and d; divides d;;; fori =1,--- ,5 — 1. By Theorem
12.14, G is isomorphic to F/K. But

FIK~(ZXZX---xZL)/AZ X drZ x --- x d;Z x {0} x --- x {0O})
~Zgy X Lgy X ++- X Lg, XL X - -+ X L.

It is possible that d; = 1, in which case Z;, = {0} and can be dropped (up to
isomorphism) from this product. Similarly, d, may be 1, and so on. We let m; be the
first d; > 1, m, be the next d;, and so on, and our theorem follows at once.

We have demonstrated the toughest part of the Fundamental Theorem. Of course,
a prime-power decomposition exists since we can break the groups Z,, into prime-
power factors. The only remaining part of Theorem 9.12 concerns the uniqueness of the
Betti number, of the torsion coefficients, and of the prime powers. The Betti number
appears as the rank of the free abelian group G/T, where T is the torsion subgroup of
G. This rank is invariant by Theorem 19.6, which shows the uniqueness of the Betti
number. The uniqueness of the torsion coefficients and of prime powers is a bit more
difficult to show. We give some exercises that indicate their uniqueness (see Exercises 14
through 22). *
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m EXERCISES 19

Computations
1. Find a basis {(al,az,a3), (bl,bz,b3), (01,02,03)} for Z x Z x Z with all a; # 0, all b,‘ 75 0, and all Ci ;é 0.
(Many answers are possible.)
2. Is {(2, 1), (3, 1)} a basis for Z x Z? Prove your assertion.
3. Is {(2, 1), (4, 1)} a basis for Z x Z? Prove your assertion.
4. Find conditions ona, b, c,d € Z for {(a, b), (c, d)} to be a basis for Z x Z. [Hint: Solve x(a, b) + y(c,d) = (e,f)
in R, and see when the x and y lie in Z.]
Concepts
In Exercises 5 and 6, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.
5. The rank of a free abelian group G is the number of elements in a generating set for G.
6. A basis for a nonzero abelian group G is a generating set X C G such that nyx; + nyxp + - - - + npyx,m = 0 for
distinct x; € X andn; € Zonlyifny =ny =--- =np =0.
7. Show by example that it is possible for a proper subgroup of a free abelian group of finite rank r also to have
rank r.
8. Determine whether each of the following is true or false.
a. Every free abelian group is torsion free.
b. Every finitely generated torsion-free abelian group is a free abelian group.
c. There exists a free abelian group of every positive integer rank.
d. A finitely generated abelian group is free abelian if its Betti number equals the number of elements in some
generating set.
e. If X generates a free abelian group G and X C Y C G, then Y generates G.
f. If X is a basis for a free abelian group G and X C Y C G, then Y is a basis for G.
g. Every nonzero free abelian group has an infinite number of bases.
h. Every free abelian group of rank at least 2 has an infinite number of bases.
i. If X is a nonzero subgroup of a finitely generated free abelian group, then X is free abelian.
j- If K is a nonzero subgroup of a finitely generated free abelian group, then G/K is free abelian.

Theory

9. Complete the proof of Theorem 19.5 (See the two sentences preceding the theorem).
10. Show that a free abelian group contains no nonzero elements of finite order.
11. Show that if G and G’ are free abelian groups, then G x G is free abelian.

12. Show that free abelian groups of finite rank are precisely the finitely generated abelian groups containing no
nonzero elements of finite order.

13. Show that QQ under addition is not a free abelian group.
Exercises 14 through 19 deal with showing the uniqueness of the prime powers appearing in the prime-power
decomposition of the torsion subgroup T of a finitely generated abelian group.

14. Let p be a fixed prime. Show that the elements of T having as order some power of p, together with zero, form
a subgroup T, of T

15. Show that in any prime-power decomposition of T, the subgroup 7}, in the preceding exercise is isomorphic to
the direct product of those cyclic factors of order some power of the prime p. [This reduces our problem
to showing that the group 7, cannot have essentially different decompositions into products of cyclic
groups.]

16. Let G be any abelian group and let n be any positive integer. Show that G[n] = {x € G | nx = 0} is a subgroup
of G. (In multiplicative notation, G[n] = {x € G |x" =¢}.)
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17. Referring to Exercise 16, show that Zyr[p] ~ Z, for any r > 1 and prime p.
18. Using Exercise 17, show that

(Zp X Zprz X -+ X Lpm)[P) 2 Ly X Ly X -+ - X Lp
N— e
m factors

provided each r; > 1.

19. Let G be a finitely generated abelian group and 7}, the subgroup defined in Exercise 14. Suppose T, ~ Zyn x
Zprs X -+ X Lym = Lpsy X Lipsy X +++ X Lyyn, where 1 <rp < <---<rpand 1 <s1 <5 <--- < s5p.
‘We need to show that m = n and r; = s; for i = 1, - - - , n to complete the demonstration of uniqueness of the
prime-power decomposition.

a. Use Exercise 18 to show that n = m.

b. Show r; = s1. Suppose r; = s; for all i < j. Show r; = sj, which will complete the proof. [Hint: Suppose
rj < sj. Consider the subgroup p'iT, = {p'ix| x € T,}, and show that this subgroup would then have two
prime-power decompositions involving different numbers of nonzero factors. Then argue that this is im-
possible by part (a) of this exercise.]

Let T be the torsion subgroup of a finitely generated abelian group. Suppose T 2 Zy,, X Zpy X - -+ X Ly, = Ly X

Zpy X -+ - X Ln,, where m; divides m; 1 fori = 1,--- ,r — 1, and n; divides nj) forn=1,--- ,s — 1,andm; > 1

and n; > 1. We wish to show that r = s and my = ng fork = 1, - - - , r, demonstrating the uniqueness of the torsion

coefficients. This is done in Exercises 20 through 22.

20. Indicate how a prime-power decomposition can be obtained from a torsion-coefficient decomposition. (Ob-
serve that the preceding exercises show the prime powers obtained are unique.)

21. Argue from Exercise 20 that m, and ng can both be characterized as follows. Let p1,-- - ,p; be the distinct
primes dividing |T|, and let p,"',--- ,p, be the highest powers of these primes appearing in the (unique)
prime-power decomposition. Then m, = ng = plh‘ p2h2 e p,""

22, Characterize m,—; and ns_1, showing that they are equal, and continue to show m,_; =ns_1 fori=1,---,
r—1,and thenr =s.

SecTiIoN 20 FREE GROUPS

For any group with elements a and b we have certain relations that a and b must satisfy
simply because they are elements of a group. For example, a"a™ = a™t™ and (ab)~! =
b~'a~!. For most of the groups we have studied so far there are relations among the
elements other than the relations that all groups possess. For example, the elements p
and p in the dihedral group D, satisfy relations pp = up~! and u? = p" = 1. In this
section, we construct free groups that have only the relations that are required in the
definition of a group. These groups and their factor groups as described in Section 21
are of great interest in the study of algebra and topology.

Words and Reduced Words

Let A # ¢ be any (not necessarily finite) set of elements g; for i € I. We think of A as
an alphabet and of the a; as letters in the alphabet. Any symbol of the form g, with
n € Z is a syllable and a finite string w of syllables written in juxtaposition is a word.
We also introduce the empty word 1, which has no syllables.

20.1 Example LetA = {a;,a,,a3}. Then
aay *afas,  alay;'asala’, and af

are all words, if we follow the convention of understanding that a;' is the same as a;.
A



20.2 Example

20.3 Example

20.4 Definition

Section 20  Free Groups 173

There are two natural types of modifications of certain words, the elementary con-
tractions. The first type consists of replacing an occurrence of a;/"a;" in a word by
a;"*". The second type consists of replacing an occurrence of a;° in a word by 1, that
is, dropping it out of the word. By means of a finite number of elementary contractions,
every word can be changed to a reduced word, one for which no more elementary con-
tractions are possible. Note that these elementary contractions formally amount to the
usual manipulations of integer exponents and would have to be satisfied if we wish for
the letters to be elements of a group.

The reduced form of the word a,3a, ~'aza;%a; =7 of Example 20.1 is a’aza,~>. A

It should be said here once and for all that we are going to gloss over several points
that some books spend pages proving, usually by complicated induction arguments
broken down into many cases. For example, suppose we are given a word and wish
to find its reduced form. There may be a variety of elementary contractions that could
be performed first. How do we know that the reduced word we end up with is the
same no matter in what order we perform the elementary contractions? The student will
probably say this is obvious. Some authors spend considerable effort proving this. The
authors agree here with the student. Proofs of this sort we regard as tedious, and they
have never made us more comfortable about the situation. However, the authors are the
first to acknowledge that we are not great mathematicians. In deference to the fact that
many mathematicians feel that these things do need considerable discussion, we shall
mark an occasion when we just state such facts by the phrase, “It would seem obvious
that,” keeping the quotation marks.

Free Groups

Let the set of all reduced words formed from our alphabet A be F[A]. We now make
F[A] into a group in a natural way. For w, and w, in F[A], define w; - w; to be the
reduced form of the word obtained by the juxtaposition w;w, of the two words.

If
wy = a23a1_5a32

and

-2_2 -2
w2 =az “ai"asa; -,

3

then wy - wa = ax’a; 3aza, 2. A

“It would seem obvious that” this operation of multiplication on F[A] is well de-
fined and associative. The empty word 1 acts as an identity element. “It would seem
obvious that” given a reduced word w € F[A], if we form the word obtained by first
writing the syllables of w in the opposite order and second by replacing each g;" by
a; ", then the resulting word w™! is a reduced word also, and

1 1

w-w =w o ow=1

The group F[A] just described is the free group generated by A. ]

Look back at Theorem 7.7 and the definition preceding it to see that the present use
of the term generated is consistent with the earlier use.

Starting with a group G and a generating set {a; | i € I}, which we will abbreviate by
{a;}, we might ask if G is free on {a;}, that is, if G is essentially the free group generated
by {a;}. We define precisely what this is to mean.
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If G is a group with a set A = {a;} of generators, and if G is isomorphic to F[A] under
a map ¢ : G — F[A] such that ¢(a;) = a;, then G is free on A, and the g; are free
generators of G. A group is free if it is free on some nonempty set A. n

The only example of a free group that has occurred before is Z, which is free on one
generator. Note that every free group is infinite, for it contains a subgroup isomorphic
with Z. A

Refer to the literature for proofs of the next three theorems. We will not use these

results. They are stated simply to inform us of these interesting facts.

If a group G is free on A and also on B, then the sets A and B have the same number
of elements; that is, any two sets of free generators of a free group have the same
cardinality.

If G is free on A, the number of elements in A is the rank of the free group G. n

Actually, the next theorem is quite evident from Theorem 20.7.
Two free groups are isomorphic if and only if they have the same rank.
A nontrivial subgroup of a free group is free.

Let F[{x, y}] be the free group on {x, y}. Let
yie=xyx*

for k > 0. The y; for k > 0 are free generators for the subgroup of F[{x,y}] that they
generate. This illustrates the bizarre fact that although a subgroup of a free group is free,
the rank of the subgroup may be much greater than the rank of the whole group! A

Homomorphisms of Free Groups

Our work in this section will be concerned primarily with homomorphisms defined on
a free group. The results here are simple and elegant.

Let G be generated by A = {a;|i € I} and let G’ be any group. If a; for i € I are
any elements in G’, not necessarily distinct, then there is at most one homomorphism
¢ : G > G’ such that ¢(a;) = a;/. If G is free on A, then there is exactly one such
homomorphism.

Let ¢ be a homomorphism from G into G’ such that ¢(a;) = a;/. Now by Theorem 7.7,
for any x € G we have
x= 1_[ a;"
J

for some finite product of the generators a;, where the a;; appearing in the product need
not be distinct. Then since ¢ is a homomorphism, we must have

o0 =[] ola") =] (a")".
J J

Thus a homomorphism is completely determined by its values on elements of a gener-
ating set. This shows that there is at most one homomorphism such that ¢(a;) = a;’.
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Now suppose G is free on A; that is, G = F[A]. For
x= l_[a,-}.""
J

in G, define ¢ : G — G’ by

v =[](a)"

J

The map is well defined, since F[A] consists precisely of reduced words; no two dif-
ferent formal products in F[A] are equal. Since the rules for computation involving
exponents in G’ are formally the same as those involving exponents in G, it is clear that
¥ (xy) = Y (x)y¥ () for any elements x and y in G, so ¢ is indeed a homomorphism. ¢

Perhaps we should have proved the first part of Theorem 20.12 earlier, rather than
having relegated it to the exercises. Note that the theorem states that a homomorphism of
a group is completely determined if we know its value on each element of a generating
set. In particular, a homomorphism of a cyclic group is completely determined by its
value on any single generator of the group.

Every group G’ is a homomorphic image of a free group G.

Let G’ ={a/|i €I}, and let A = {a; | i € I} be a set with the same number of elements
as G'. Let G = F[A]. Then by Theorem 20.12 there exists a homomorphism y mapping
G into G’ such that ¥ (a;) = a/. Clearly the image of G under ¥ is all of G'. *

Another Look at Free Abelian Groups

It is important that we do not confuse the notion of a free group with the notion of
a free abelian group. A free group on more than one generator is not abelian. In the
preceding section, we defined a free abelian group as an abelian group that has a basis,
that is, a generating set satisfying properties described in Theorem 19.1. There is another
approach, via free groups, to free abelian groups. We now describe this approach.

Let F[A] be the free group on the generating set A. We shall write F in place of F[A]
for the moment. Note that F is not abelian if A contains more than one element. Let C
be the commutator subgroup of F. Then F/C is an abelian group, and it is not hard to
show that F/C is free abelian with basis {aC | a € A}. If aC is renamed a, we can view
F/C as a free abelian group with basis A. This indicates how a free abelian group having
a given set as basis can be constructed. Every free abelian group can be constructed in
this fashion, up to isomorphism. That is, if G is free abelian with basis X, form the free
group F[X], form the factor group of F[X] modulo its commutator subgroup, and we
have a group isomorphic to G.

Theorems 20.7, 20.9, and 20.10 hold for free abelian groups as well as for free
groups. In fact, the abelian version of Theorem 20.10 was proved for the finite rank
case in Theorem 19.11. In contrast to Example 20.11 for free groups, it is true that
for a free abelian group the rank of a subgroup is at most the rank of the entire group.
Theorem 19.11 also showed this for the finite rank case.
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m EXERCISES 20

Computations

1.

Find the reduced form and the inverse of the reduced form of each of the following words.

a. a2b~1Pdc 1?2 b. a2a3pa*c*Pa!

. Compute the products given in parts (a) and (b) of Exercise 1 in the case that {a, b, c} is a set of generators

forming a basis for a free abelian group. Find the inverse of these products.

3. How many different homomorphisms are there of a free group of rank 2 into

a. Z4? b. Ze? c. S3?
4. How many different homomorphisms are there of a free group of rank 2 onto

a. Z4? b. Ze? c. S3?
5. How many different homomorphisms are there of a free abelian group of rank 2 into

a. Z4? b. Zg? c. S3?
6. How many different homomorphisms are there of a free abelian group of rank 2 onto

a. Z4? b. Ze? c. $3?

Concepts

In Exercises 7 and 8, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

7.

8.
9.

10.

A reduced word is one in which there are no appearances in juxtaposition of two syllables having the same
letter and also no appearances of a syllable with exponent 0.

The rank of a free group is the number of elements in a set of generators for the group.

Take one of the instances in this section in which the phrase “It would seem obvious that” was used and discuss
your reaction in that instance.

Determine whether each of the following is true or false.

a. Every proper subgroup of a free group is a free group.

b. Every proper subgroup of every free abelian group is a free group.

¢. A homomorphic image of a free group is a free group.

d. Every free abelian group has a basis.

e. The free abelian groups of finite rank are precisely the finitely generated abelian groups.
f. No free group is free.

g. No free abelian group is free.

h. No free abelian group of rank > 1 is free.

i. Any two free groups are isomorphic.

j- Any two free abelian groups of the same rank are isomorphic.

Theory

11.

Let G be a finitely generated abelian group with identity 0. A finite set {by, - - - , b,}, where b; € G, is a basis

for Gif {b1,- - -, bn} generates G and )| m;b; = 0 if and only if each m;b; = 0, where m; € Z.

a. Show that {2, 3} is not a basis for Z4. Find a basis for Z4.

b. Show that both {1} and {2, 3} are bases for Zg. (This shows that for a finitely generated abelian group
G with torsion, the number of elements in a basis may vary; that is, it need not be an invariant of the
group G.)

¢. Is a basis for a free abelian group as we defined it in Section 19 a basis in the sense in which it is used in
this exercise?

d. Show that every finite abelian group has a basis {by, - - - , b,}, where the order of b; divides the order of
biy1.
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In present-day expositions of algebra, a frequently used technique (particularly by the disciples of N. Bourbaki)

for

So

introducing a new algebraic entity is the following:

1. Describe algebraic properties that this algebraic entity is to possess.

2. Prove that any two algebraic entities with these properties are isomorphic, that is, that these
properties characterize the entity.

3. Show that at least one such entity exists.

The next three exercises illustrate this technique for three algebraic entities, each of which we have met before.
that we do not give away their identities, we use fictitious names for them in the first two exercises. The last

part of these first two exercises asks us to give the usual name for the entity.

12.

13.

14.

Let G be any group. An abelian group G* is a blip group of G if there exists a fixed homomorphism ¢ of G
onto G* such that each homomorphism ¥ of G into an abelian group G’ can be factored as ¢ = 6¢, where
is a homomorphism of G* into G’ (see Fig. 20.14).

a. Show that any two blip groups of G are isomorphic. [Hint: Let G;* and G,* be two blip groups of G.
Then each of the fixed homomorphisms ¢; : G — G1* and ¢, : G — G»* can be factored via the other
blip group according to the definition of a blip group; that is, ¢; = 61¢, and ¢ = 02¢;. Show that ; is an
isomorphism of G>* onto G1* by showing that both 616, and 6,0, are identity maps.]

b. Show for every group G that a blip group G* of G exists.

¢. What concept that we have introduced before corresponds to this idea of a blip group of G?

4 . f ,
G G N G
G* G

20.14 Figure 20.15 Figure

Let S be any set. A group G together with a fixed function g : § — G constitutes a blop group on S if for each
group G’ and map f : § — G’ there exists a unique homomorphism ¢y of G into G’ such that f = ¢rg (see
Fig. 20.15).

a. Let S be a fixed set. Show that if both G1, together with g; : S — Gy, and Gy, together with g, : S — G,
are blop groups on S, then G and G, are isomorphic. [Hint: Show that g and g are one-to-one maps and
that g1S and g»S generate G1 and Ga, respectively. Then proceed in a way analogous to that given by the
hint for Exercise 12.]

b. Let S be a set. Show that a blop group on S exists. You may use any theorems of the text.

¢. What concept that we have introduced before corresponds to this idea of a blop group on S$?

Characterize a free abelian group by properties in a fashion similar to that used in Exercise 13.

SECTION21 GROUP PRESENTATIONS

Definition

Following most of the literature on group presentations, in this section we let 1 be the
identity of a group. The idea of a group presentation is to form a group by giving a set of
generators for the group and certain equations or relations that we want the generators
to satisfy. We want the group to be as free as it possibly can be on the generators, subject
to these relations.
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Suppose G is free with generation x and 'y except for the relation xy = yx, which we may
express as xyx~'y~! = 1. Note that the condition xy = yx is exactly what is needed to
make G abelian, even though xyx~!y~! is just one of the many possible commutators of
F[{x,y}]. Thus G is free abelian on two generators and is isomorphic to F[{x, y}] modulo
its commutator subgroup. This commutator subgroup of F[{x, y}] is the smallest normal
subgroup containing xyx~'y~!, since any normal subgroup containing xyx~!y~! gives
rise to a factor group that is abelian and thus contains the commutator subgroup by
Theorem 13.22. A

The preceding example illustrates the general situation. Let F[A] be a free group
and suppose that we want to form a new group as much like F[A] as it can be, subject to
certain equations that we want satisfied. Any equation can be written in a form in which
the right-hand side is 1. Thus we can consider the equations to be r; = 1 for i € I, where
r; € F[A]. If we require that r; = 1, then we will have to have

)c(ri")x_1 =1
for any x € F[A] and n € Z. Also any product of elements equal to 1 will again have to
equal 1. Thus any finite product of the form

l_[x]'(rij"j)xj_l’
J

where the 7;, need not be distinct, will have to equal 1 in the new group. It is readily
checked that the set of all these finite products is a normal subgroup R of F[A]. Thus any
group looking as much as possible like F[A], subject to the requirements r; = 1, also has
r = 1 for every r € R. But F[A]/R looks like F[A] (remember that we multiply cosets
by choosing representatives), except that R has been collapsed to form the identity 1.
Hence the group we are after is (at least isomorphic to) F[A]/R. We can view this group
as described by the generating set A and the set {r; | i € I}, which we will abbreviate {r;}.

m HISTORICAL NOTE

he idea of a group presentation already ap-

pears in Arthur Cayley’s 1859 paper, “On
the Theory of Groups as Depending on the Sym-
bolic Equation 6" = 1. Third Part.” In this arti-
cle, Cayley gives a complete enumeration of the
five groups of order 8, both by listing all the el-
ements of each and by giving for each a presen-
tation. For example, his third example is what is
here called the dihedral group D,; Cayley notes
that this group is generated by the two elements
«, B with the relations o* = 1, 82 = 1,08 = Ba’.
He also shows more generally that a group of order
mn is generated by «, 8 with the relations o™ = 1,
B" = 1,af = Bo* if and only if s" = 1 (mod m)
(see Exercise 13).

In 1878, Cayley returned to the theory of
groups and noted that a central problem in that

theory is the determination of all groups of a given
order n. In the early 1890s, Otto Holder published
several papers attempting to solve Cayley’s prob-
lem. Using techniques similar to those discussed in
Sections 17 and 21, Holder determined all simple
groups of order up to 200 and characterized all the
groups of orders p*, pg?, pgr, and p*, where p,q,r
are distinct prime numbers. Furthermore, he devel-
oped techniques for determining the possible struc-
tures of a group G, if one is given the structure of a
normal subgroup H and the structure of the factor
group G/H. Interestingly, since the notion of an ab-
stract group was still fairly new at this time, Holder
typically began his papers with the definition of a
group and also emphasized that isomorphic groups
are essentially one and the same object.

21.2 Definition Let A be a set and let {r;} C F[A]. Let R be the least normal subgroup of F[A] contain-
ing the r;. An isomorphism ¢ of F[A]/R onto a group G is a presentation of G. The
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sets A and {r;} give a group presentation. The set A is the set of generators for the
presentation and each r; is a relator. Each r € R is a consequence of {r;}. An equation
r; =1 is a relation. A finite presentation is one in which both A and {r;} are finite
sets. [ ]

This definition may seem complicated, but it really is not. In Example 21.1, {x,y}
is our set of generators and xyx~'y~! is the only relator. The equation xyx~'y~! =1, or
xy = yx, is a relation. This was an example of a finite presentation.

If a group presentation has generators x; and relators r;, we shall use the notations

(xj:17) or x:ri=1
to denote the group presentation. We may refer to F[{x;}]/R as the group with presenta-
tion (xj : r;).
Isomorphic Presentations
Consider the group presentation with
A={a} and ({r}={d",
that is, the presentation
(a: o= 1).

This group defined by one generator a, with the relation a® = 1, is isomorphic to Z.
Now consider the group defined by two generators a and b, with a> = 1,5° = 1,
and ab = ba, that is, the group with presentation

(a,b: a% b3 aba”'b7).
The condition a® = 1 gives a~! = a. Also b> = 1 gives b~ = b%. Thus every element
in this group can be written as a product of nonnegative powers of a and b. The relation
aba~'b~! = 1, that is, ab = ba, allows us to write first all the factors involving a and

then the factors involving b. Hence every element of the group is equal to some a™b".
But then o> = 1 and b* = 1 show that there are just six distinct elements,

1,b,b%,a,ab,ab>.
The subgroup (ab) contains the elements 1, ab, and the powers of ab:
(ab)? = a*b* = b?
(ab)® = abb® = a
(ab)* = a(ab) = b
(ab)® = (ab)b = ab™.
So this group is also a cyclic group of order 6 isomorphic with Zg. A

The dihedral group has presentation
D, : (a,b|d",b? abab)

since if we let a = p and b = p the three relations are exactly the defining relations for
D,. (The last relation abab = 1 is equivalent to ab = ba™'.) The element abab is in R
if and only if b(abab)b™! is in R since R is a normal subgroup. We have b(abab)b~' =
baba. So in any presentation with generators a and b and a relator abab, we can replace
abab with baba and get the same subgroup R and therefore the same factor group. Hence
the dihedral group also has presentation

D, : (ab: d" b baba).
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Setting the relators to 1 gives the equivalent presentation
@b:d"=1,0"=1,ba=a'b"")

which can also be rewritten as
(@b : a"=1,b*=1ba=a"'h). A

The preceding examples illustrate that different presentations may give isomor-
phic groups. When this happens, we have isomorphic presentations. To determine
whether two presentations are isomorphic may be very hard. It has been shown (see
Rabin [22]) that a number of such problems connected with this theory are not gener-
ally solvable; that is, there is no routine and well-defined way of discovering a solution
in all cases. These unsolvable problems include the problem of deciding whether two
presentations are isomorphic, whether a group given by a presentation is finite, free,
abelian, or trivial, and the famous word problem of determining whether a given word
w is a consequence of a given set of relations {r;}.

The importance of this material is indicated by our Theorem 20.13, which guaran-
tees that every group has a presentation.

Let us show that

®y:Yx=yyy=x)
is a presentation of the trivial group of one element. We need only show that x and y
are consequences of the relators y>xy~! and yx?yx~!, or that x =1 and y = 1 can be
deduced from y?x = y and yx?y = x. We illustrate both techniques.

As a consequence of y?xy~!, we get yx upon conjugation by y~!. From yx we deduce
x~'y71, and then (x~'y~")(yx%yx~!) gives xyx~!. Conjugating xyx~! by x~!, we get y.
From y we get y~!, and y~'(yx) is x.

Working with relations instead of relators, from y?x = y we deduce yx = 1 upon
multiplication by y~! on the left. Then substituting yx = 1 into yx%y = x, that is,
(x)(xy) = x, we get xy = x. Then multiplying by x~! on the left, we have y = 1.
Substituting this in yx = 1, we getx = 1.

Both techniques amount to the same work, but it somehow seems more natural to
most of us to work with relations. A

Applications

We conclude this chapter with two applications.

Let us determine all groups of order 10 up to isomorphism. We know from the Funda-
mental Theorem 9.12 that every abelian group of order 10 is isomorphic to Z;o. Suppose
that G is nonabelian of order 10. By Sylow theory, G contains a normal subgroup H of
order 5, and H must be cyclic. Let a be a generator of H. Then G/H is of order 2 and
thus isomorphic to Z. If b € G and b ¢ H, we must then have b? € H. Since every ele-
ment of H except 1 has order 5, if b? were not equal to 1, then b? would have order 5,
so b would have order 10. This would mean that G would be cyclic, contradicting our
assumption that G is not abelian. Thus »? = 1. Finally, since H is a normal subgroup of
G,bHb™! = H, so0 in particular, bab~! € H. Since conjugation by b is an automorphism
of H,bab~! must be another element of H of order 5, hence bab~! equals a,a?,a?, or
a*. But bab~! = a would give ba = ab, and then G would be abelian, since a and b
generate G. Thus the possibilities for presentations of G are:

1. (a,b:d° =1,b* = 1,ba = d’b),
2. (a,b:a°=1,b*>=1,ba=a’b),
3. (a,b:a°=1,b>=1,ba=ab).
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Note that all three of these presentations can give groups of order at most 10, since
the last relation ba = a'b enables us to express every product of a’s and b’s in G in the
form a’b’. Then a® = 1 and b? = 1 show that the set

S= {aobo,a'bo,azbo,a3b°,a4b°, aob',albl,azbl,a3b1,a4b1}

includes all elements of G.
It is not yet clear that all these elements in S are distinct, so that we have in all three
cases a group of order 10. For example, the group presentation

(a,b:a =1,b* =1,ba = d®b)
gives a group in which, using the associative law, we have
a = b’a = (bb)a = b(ba) = b(a’b) = (ba)(ab)
= (a®b)(ab) = d*(ba)b = a*(a®b)b = a*b* = a*

Thus in this group, a = a*, so a® = 1, which, together with a® = 1, yields a*> = 1. But

a® = 1, together with @®> = 1, means that a = 1. Hence every element in the group with
presentation
(@b:a =1,b>=1,ba=ad’)

is equal to either 1 or b; that is, this group is isomorphic to Z,. A similar study of
(bb)a = b(ba)

for
(a,b: @ =1,0=1,ba= a3b)

shows that a = a* again, so this also yields a group isomorphic to Z,.
This leaves just

(@,b:a® =1,b*=1,ba = a*b)

as a candidate for a nonabelian group of order 10. As in Example 21.4 this is a presen-
tation of the dihedral group Ds.

If we were unaware of the dihedral group, how would we show that the presentation
gives a group with 10 elements? One attack is as follows. Let us try to make S into a
group by defining (a*b')(a“b") to be a*b’, where x is the remainder of s + u(4') when
divided by 5, and y is the remainder of ¢ + v when divided by 2, in the sense of the
division algorithm (Theorem 6.2). The formula s + u(4)' is counting what the power
of a should be after moving u copies of a by ¢ copies of b. In other words, we use
the relation ba = a*b as a guide in defining the product (a*b')(a*b") of two elements
of S. We see that a®b? acts as identity, and that given a“b’, we can determine ¢ and s
successively by letting

t = —v (mod 2)

and then
s = —u(4") (mod 5),

giving a*b’, which is a left inverse for a“b*. We will then have a group structure on S if
and only if the associative law holds. Exercise 13 asks us to carry out the straightforward
computation for the associative law and to discover a condition for S to be a group under
such a definition of multiplication. The criterion of the exercise in this case amounts to
the valid congruence

4% = 1 (mod 5).

Thus we do get a group of order 10. Note that
22 & 1 (mod 5)
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and
32 £ 1 (mod 5),

so Exercise 13 also shows that
(a,b:d’ =1,b> =1,ba = a’bh)
and
(a,b: @ =1, =1,ba= a3b)
do not give groups of order 10. A

Let us determine all groups of order 8 up to isomorphism. We know the three abelian

ones:
Zg, Zz X Z4, Zz X Zz X Zz.

Using generators and relations, we shall give presentations of the nonabelian groups.
Let G be nonabelian of order 8. Since G is nonabelian, it has no elements of order 8,
so each element but the identity is of order either 2 or 4. If every element were of order
2, then for a, b € G, we would have (ab)? = 1, that is, abab = 1. Then since > = 1 and
b? = 1 also, we would have
ba = a’bab® = a(ab)*b = ab,

contrary to our assumption that G is not abelian. Thus G must have an element of
order 4.

Let (a) be a subgroup of G of order 4. If b ¢ (a), the cosets (a) and b(a) exhaust all
of G. Hence a and b are generators for G and a* = 1. Since (a) is normal in G (by Sylow
theory, or because it is of index 2), G/{a) is isomorphic to Z, and we have b? € (a). If
b? = a or b* = @°, then b would be of order 8. Hence b? = 1 or b? = a2. Finally, since
(a) is normal, we have bab™! € (a), and since b(a)b™! is a subgroup conjugate to (a)
and hence isomorphic to (a), we see that bab~! must be an element of order 4. Thus
bab~! = a or bab™! = &. If bab™" were equal to a, then ba would equal ab, which
would make G abelian. Hence bab™! = a2, so ba = a°b. Thus we have two possibilities

for G, namely,
G :(ab:a* =1, =1,ba = a’b)

and
Gy :(a,b: a =10 =d"ba= a3b).

Note that a~! = &, and that ~! is b in G, and b in G,. These facts, along with
the relation ba = @b, enable us to express every element in G; in the form a™b", as
in Examples 21.3 and 21.6. Since a* =1 and either ¥* = 1 or b* = a2, the possible
elements in each group are

1, a, d* d, b, ab, a’*b, a’b.

Thus G; and G, each have order at most 8. The first group G; is sometimes called the
octic group, but as we saw in Example 21.4 it is isomorphic with our old friend D,, the
dihedral group. For the second we can make S into a group by defining (a’b/)(a’*) to be
a’b’ where y is j + s modulo 2 and if j + s < 2, then x is the remainder of i + r(2j + 1)
when divided by 4 and if j 4+ s = 2, then x is the remainder when i + 2 + r(2j + 1) is
divided by 4. We leave it as an exercise to show that this operation makes § a group,
which shows that G, is a presentation of a group of order 8.

Since ba = a®b # ab, we see that both G, and G, are nonabelian. That the two
groups are not isomorphic follows from the fact that a computation shows that G, has
only two elements of order 4, namely, a and 4. On the other hand, in G, all elements
but 1 and @? are of order 4. We leave the computations of the tables for these groups
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to Exercise 3. To illustrate suppose we wish to compute (a?b)(a’b). Using ba = a’b
repeatedly, we get

(@®b)(@’b) = d(ba)a®b = d’(ba)ab = a®(ba)b = a''b>.

Then for Gy, we have

B =o' = o,
but if we are in G,, we get

A =a®=a

The group G; is called the quaternion group. We shall encounter the quaternion
group again in Section 32. A

m EXERCISES 21

Computations

1.
2.

Give a presentation of Z4 involving one generator; involving two generators; involving three generators.
Give a presentation of S3 involving three generators.

3. Give the tables for both the octic group

(a,b:a* =1,b> =1,ba=d’b)
and the quaternion group
(a,b: a* = 1,0 = a®,ba = a’b).

In both cases, write the elements in the order 1,a,a?,a%, b, ab, a®b, a’b. (Note that we do not have to com-
pute every product. We know that these presentations give groups of order 8, and once we have computed
enough products the rest are forced so that each row and each column of the table has each element exactly
once.)

Determine all groups of order 14 up to isomorphism. [Hint: Follow the outline of Example 21.6 and use
Exercise 13, part (b).]

Determine all groups of order 21 up to isomorphism. [Hint: Follow the outline of Example 21.6 and use
Exercise 13, part (b). It may seem that there are two presentations giving nonabelian groups. Show that they
are isomorphic.]

Concepts

In Exercises 6 and 7, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

6.
7.

8.

A consequence of the set of relators is any finite product of relators raised to powers.

Two group presentations are isomorphic if and only if there is a one-to-one correspondence of the generators
of the first presentation with the generators of the second that yields, by renaming generators, a one-to-one
correspondence of the relators of the first presentation with those of the second.

Determine whether each of the following is true or false.

a. Every group has a presentation.

b. Every group has many different presentations.

c. Every group has two presentations that are not isomorphic.
d. Every group has a finite presentation.

e. Every group with a finite presentation is of finite order.

f. Every cyclic group has a presentation with just one generator.
g. Every conjugate of a relator is a consequence of the relator.
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h. Two presentations with the same number of generators are always isomorphic.

i. In a presentation of an abelian group, the set of consequences of the relators contains the commutator
subgroup of the free group on the generators.

j- Every presentation of a free group has 1 as the only relator.

Theory

9.

10.

11.

12.

13.

14.
15.

Use the methods of this section and Exercise 13, part (b), to show that there are no nonabelian groups of
order 15.

Show, using Exercise 13, that
(a,b:d® =1,b* = 1,ba = a®b)
gives a group of order 6. Show that it is nonabelian.
Show that the presentation
(a,b:a® = 1,b* = 1,ba = a®b)
of Exercise 10 gives (up to isomorphism) the only nonabelian group of order 6, and hence gives a group
isomorphic to S3.

‘We showed in Example 13.6 that A4 has no subgroup of order 6. The preceding exercise shows that such
a subgroup of A4 would have to be isomorphic to either Zg or S3. Show again that this is impossible by
considering orders of elements.

Let
S={dV|0<i<m0<j<n}
that is, S consists of all formal products a’¥/ starting with a%° and ending with a™~'5"~1. Let r be a positive
integer, and define multiplication on S by
(@b')(a"b") = a'P,

where x is the remainder of s + u(r) when divided by m, and y is the remainder of ¢ + v when divided by n, in
the sense of the division algorithm (Theorem 6.2).
a. Show that a necessary and sufficient condition for the associative law to hold and for S to be a group under

this multiplication is that 7* = 1 (mod m).
b. Deduce from part (a) that the group presentation

(a,b:a" =1,b" =1,ba=a"b)

gives a group of order mn if and only if 7* = 1 (mod m). (See the Historical Note in this section.)

Without using Exercise 13, prove that (a,b : a® = 1,b? = 1,ba = a°b) is a presentation for the group Z5.

Is the group obtained from the group presentation with the letters a through z as generators and the words in a
standard English dictionary as relators the trivial group? Prove your answer.
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RINGS AND FIELDS

All our work thus far has been concerned with sets on which a single binary operation
has been defined. Our years of work with the integers and real numbers show that a study
of sets on which two binary operations have been defined should be of great importance.
Algebraic structures of this type are introduced in this section. In one sense, this section
seems more intuitive than those that precede it, for the structures studied are closely
related to those we have worked with for many years. However, we will be continuing
with our axiomatic approach. So, from another viewpoint this study is more complicated
than group theory, for we now have two binary operations and more axioms to deal with.

Definitions and Basic Properties

The most general algebraic structure with two binary operations that we shall study is
called a ring. As Example 22.2 following Definition 22.1 indicates, we have all worked
with rings since elementary school.

A ring (R, +,-) is a set R together with two binary operations + and -, which we call
addition and multiplication, defined on R such that the following axioms are satisfied:

. (R,+) is an abelian group.

Z2,. Multiplication is associative.

F23. Forall a,b, c € R, the left distributive law, a - (b + ¢) = (a- b) + (a - ¢) and
the right distributive law (a + b) - ¢ = (a-c¢) + (b - ¢) hold. ]

We are well aware that axioms .%2,.%2,, and .%2; for a ring hold in any subset of the
complex numbers that is a group under addition and that is closed under multiplication.
For example, (Z, +, ), (Q,+, ), (R, +,-), and (C, +, ) are rings. A

185
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m HISTORICAL NOTE

he theory of rings grew out of the study of two

particular classes of rings, polynomial rings in
n variables over the real or complex numbers (Sec-
tion 27) and the “integers” of an algebraic number
field. It was David Hilbert (1862-1943) who first
introduced the term ring, in connection with the
latter example, but it was not until the second
decade of the twentieth century that a fully ab-
stract definition appeared. The theory of commu-
tative rings was given a firm axiomatic foundation
by Emmy Noether (1882-1935) in her monumen-
tal paper “Ideal Theory in Rings,” which appeared
in 1921. A major concept of this paper is the as-
cending chain condition for ideals. Noether proved
that in any ring in which every ascending chain
of ideals has a maximal element, every ideal is

Emmy Noether received her doctorate from
the University of Erlangen, Germany, in 1907.
Hilbert invited her to Gottingen in 1915, but his ef-
forts to secure her a paid position were blocked be-
cause of her sex. Hilbert complained, “I do not see
that the sex of the candidate is an argument against
her admission [to the faculty]. After all, we are a
university, not a bathing establishment.” Noether
was, however, able to lecture under Hilbert’s name.
Ultimately, after the political changes accompa-
nying the end of the First World War reached
Gottingen, she was given in 1923 a paid position
at the University. For the next decade, she was very
influential in the development of the basic concepts
of modern algebra. Along with other Jewish fac-
ulty members, however, she was forced to leave

finitely generated.

Gottingen in 1933. She spent the final two years of
her life at Bryn Mawr College near Philadelphia.

22.3 Example

22.4 Example

It is customary to denote multiplication in a ring by juxtaposition, using ab in place
of a-b. We shall also observe the usual convention that multiplication is performed
before addition in the absence of parentheses, so the left distributive law, for example,
becomes

a(b+c) =ab+ac,

without the parentheses on the right side of the equation. Also, as a convenience analo-
gous to our notation in group theory, we shall somewhat incorrectly refer to a ring R in
place of a ring (R, +, -), provided that no confusion will result. In particular, from now
on Z will always be (Z, +, -), and Q, R, and C will also be the rings in Example 22.2.
‘We may on occasion refer to (R, +) as the additive group of the ring R.

Let R be any ring and let M,(R) be the collection of all n x n matrices having ele-
ments of R as entries. The operations of addition and multiplication in R allow us to add
and multiply matrices in the usual fashion, explained in the appendix. We can quickly
check that (M,(R),+) is an abelian group. The associativity of matrix multiplication
and the two distributive laws in M, (R) are more tedious to demonstrate, but straight-
forward calculations indicate that they follow from the same properties in R. We will
assume from now on that we know that M,,(R) is a ring. In particular, we have the rings
M,(Z),M,(Q), M,(R), and M,,(C). Note that multiplication is not a commutative opera-
tion in any of these rings for n > 2. A

Let F be the set of all functions f : R — R. We know that (F,+) is an abelian group
under the usual function addition,

F + &) =f(x) + gx).

We define multiplication on F by
(fe)(x) = f(x)g).

That is, fg is the function whose value at x is f(x)g(x). It is readily checked that F
is a ring; we leave the demonstration to Exercise 36. We have used this juxtaposition
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notation o u for the composite function o (u(x)) when discussing permutation multipli-
cation. If we were to use both function multiplication and function composition in F, we
would use the notation f o g for the composite function. However, we will use compo-
sition of functions almost exclusively with homomorphisms, which we will denote by
Greek letters, and the usual product defined in this example chiefly when multiplying
polynomial function’s f(x)g(x), so no confusion should result. A

Recall that in group theory, nZ is the cyclic subgroup of Z under addition consisting of
all integer multiples of the integer n. Since (nr)(ns) = n(nrs), we see that nZ is closed
under multiplication. The associative and distributive laws that hold in Z then assure us
that (nZ, +, -) is a ring. From now on in the text, we will consider nZ to be thisring. A

Consider the cyclic group (Z,,+). If we define for a,b € Z, the product ab as the
remainder of the usual product of integers when divided by n, it can be shown that
(Zpn,+,-) is a ring. We shall feel free to use this fact. For example, in Z;p we have
(3)(7) = 1. This operation on Z, is multiplication modulo n. We do not check the ring
axioms here, for they will follow in Section 30 from some of the theory we develop

there. From now on, Z, will always be the ring (Z,, +, -). A
If Ri,R,,--- ,R, are rings, we can form the set R; x Ry x --- X R, of all ordered
n-tuples (ry,ra, - - - ,rn), where r; € R;. Defining addition and multiplication of n-tuples

by components (just as for groups), we see at once from the ring axioms in each com-
ponent that the set of all these n-tuples forms a ring under addition and multiplication
by components. The ring R; X R; X --- X R, is the direct product of the rings R;. A

Continuing matters of notation, we shall always let 0 be the additive identity of a
ring. The additive inverse of an element a of a ring is —a. We shall frequently have
occasion to refer to a sum

ata+---+a

having n summands. We shall let this sum be # - a, always using the dot. However, n - a
is not to be interpreted as a multiplication of n and a in the ring, for the integer n may
not be in the ring at all. If n < 0, we let

n-a=(—a)+((—a)+---+(-a)

for |n| summands. Finally, we define
0-a=0

for 0 € Z on the left side of the equations and O € R on the right side. Actually, the
equation Oa = 0 holds also for 0 € R on both sides. The following theorem proves this
and various other elementary but important facts. Note the strong use of the distributive
laws in the proof of this theorem. Axiom .%2; for a ring concerns only addition, and
axiom .#2; concerns only multiplication. This shows that in order to prove anything that
gives a relationship between these two operations, we are going to have to use axiom
F23. For example, the first thing that we will show in Theorem 22.8 is that Oa = 0 for
any element a in a ring R. Now this relation involves both addition and multiplication.
The multiplication Oa stares us in the face, and 0 is an additive concept. Thus we will
have to come up with an argument that uses a distributive law to prove this.

If R is a ring with additive identity 0, then for any a,b € R we have

1. 0a=a0=0,
2. a(—b) = (—a)b = —(ab),
3. (—a)(—b) = ab.
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For Property 1, note that by axioms .%2; and .%2,,
a0 + a0 = a(0 + 0) = a0 = 0 + a0.

Then by the cancellation law for the additive group (R, +), we have a0 = 0. Likewise,
0a+0a=0+0)a=0a=0+0a

implies that Oz = 0. This proves Property 1.

In order to understand the proof of Property 2, we must remember that, by
definition, —(ab) is the element that when added to ab gives 0. Thus to show that
a(—b) = —(ab), we must show precisely that a(—b) + ab = 0. By the left distributive
law,

a(—b)+ab=a(—-b+b) =a0 =0,
since a0 = 0 by Property 1. Likewise,
(—a)p+ab=(—a+a)pb=0b=0.
For Property 3, note that
(=a)(—=b) = —(a(-b))
by Property 2. Again by Property 2,
—(a(—b)) = —(—(ab)),
and —(—(ab)) is the element that when added to —(ab) gives 0. This is ab by definition
of —(ab) and by the uniqueness of an inverse in a group. Thus, (—a)(—b) = ab. *

Based on high school algebra it seems natural to begin a proof of Property 2 in
Theorem 22.8 by writing (—a)b = ((—1)a)b. In Exercise 30 you will be asked to find
an error in a “proof” of this sort.

It is important that you understand the preceding proof. The theorem allows us to
use our usual rules for signs.

Homomorphisms and Isomorphisms

From our work in group theory, it is quite clear how a structure-relating map of a ring R
into a ring R’ should be defined.

For rings R and R, amap ¢ : R — R’ is a homomorphism if the following two condi-
tions are satisfied for all a,b € R:

1. ¢la+b)=¢a)+¢O),
2. ¢(ab) = p(a)p(b). [ ]

In the preceding definition, Condition 1 is the statement that ¢ is a group homo-
morphism mapping the abelian group (R, +) into (R’, +). Condition 2 requires that ¢
relate the multiplicative structures of the rings R and R’ in the same way. Since ¢ is also
a group homomorphism, all the results concerning group homomorphisms are valid for
the additive structure of the rings. In particular, ¢ is one-to-one if and only if its kernel
Ker(¢) = {a € R| ¢(a) = 0’} is just the subset {0} of R. The homomorphism ¢ of the
group (R, +) gives rise to a factor group. We expect that a ring homomorphism will give
rise to a factor ring. This is indeed the case. We delay discussion of this to Section 30,
where the treatment will parallel our treatment of factor groups in Section 12.
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Let F be the ring of all functions mapping R into R defined in Example 22.4. For each
a € R, we have the evaluation homomorphism ¢, : F — R, where ¢,(f) = f(a) for
f € F. We will work a great deal with this homomorphism in the rest of this text, for
finding a real solution of a polynomial equation p(x) = 0 amounts precisely to finding
a € R such that ¢,(p) = 0. Much of the remainder of this text deals with solving poly-
nomial equations. We leave the demonstration of the homomorphism properties for ¢,
to Exercise 37. A

The map ¢ : Z — Z, where ¢(a) is the remainder of a modulo ~ is a ring homomor-
phism for each positive integer n. We know ¢(a + b) = ¢(a) + ¢(b) by group theory.
To show the multiplicative property, write a = g;n + r; and b = g,n + r, according
to the division algorithm. Then ab = n(q19>n + r1q> + q1r2) + rir2. Thus ¢(ab) is the
remainder of rir, when divided by n. Since ¢(a) = r; and ¢(b) = r,, Example 22.6
indicates that ¢(a)@(b) is also this same remainder, so ¢(ab) = ¢(a)¢(b). From group
theory, we anticipate that the ring Z, might be isomorphic to a factor ring Z/nZ. This
is indeed the case; factor rings will be discussed in Section 30. A

We realize that in the study of any sort of mathematical structure, an idea of basic
importance is the concept of two systems being structurally identical, that is, one being
just like the other except for names. In algebra this concept is always called isomor-
phism. The concept of two things being just alike except for names of elements leads
us, just as it did for groups, to the following definition.

An isomorphism ¢ : R — R’ from a ring R to a ring R’ is a homomorphism that is
one-to-one and onto R'. The rings R and R’ are then isomorphic. ]

From our work in group theory, we expect that isomorphism gives an equivalence
relation on any collection of rings. We need to check that the multiplicative property of
an isomorphism is satisfied for the inverse map ¢! : R — R (to complete the symme-
try argument). Similarly, we check that if u : R” — R” is also a ring isomorphism, then
the multiplicative requirement holds for the composite map u¢ : R — R” (to complete
the transitivity argument). We ask you to do this in Exercise 38.

As abelian groups, (Z,+) and (2Z,+) are isomorphic under the map ¢ : Z — 27Z,
with ¢(x) = 2x for x € Z. Here ¢ is not a ring isomorphism, for ¢(xy) = 2xy, while
$()P(y) = 2x2y = 4xy. A

Multiplicative Questions: Fields

Many of the rings we have mentioned, such as Z, QQ, and R, have a multiplicative identity
element 1. However, 2Z does not have an identity element for multiplication. Note also
that multiplication is not commutative in the matrix rings described in Example 22.3.

It is evident that {0}, with 0 + 0 = 0 and (0)(0) = O, gives a ring, the zero ring.
Here 0 acts as multiplicative as well as additive identity element. By Theorem 22.8,
this is the only case in which O could act as a multiplicative identity element, for from
Oa = 0, we can then deduce that a = 0. Theorem 1.15 shows that if a ring has a multi-
plicative identity element, it is unique. We denote a multiplicative identity element in a
ring by 1.

A ring in which the multiplication is commutative is a commutative ring. A ring with a
multiplicative identity element is a ring with unity; the multiplicative identity element
1 is called “unity.” ]
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In a ring with unity 1 the distributive laws show that

A+1+--+DA+1+--+ D=0 +1+---+1),
n summands m summands nm summands

thatis, (n - 1)(m - 1) = (nm) - 1. The next example gives an application of this observation.

We claim that for integers r and s where gcd(r,s) = 1, the rings Z,; and Z, x Z; are
isomorphic. Additively, they are both cyclic abelian groups of order rs with generators
1 and (1, 1) respectively. Thus ¢ : Z,; — Z, x Z, defined by ¢(n- 1) =n - (1,1) is an
additive group isomorphism. To check the multiplicative Condition 2 of Definition 22.9,
we use the observation preceding this example for the unity (1, 1) in the ring Z, x Z;,
and compute.

¢(m) = (nm) - (1,1) = [n- (1, D][m - (1, 1)] = ()¢ (m). A

Note that a direct product R = R; X R X --- X R, of rings is commutative if and
and only if each ring R; is commutative. Furthermore, R has a unity if and only if each
R; has a unity.

The set R* of nonzero real numbers forms a group under multiplication. However,
the nonzero integers do not form a group under multiplication since only the integers 1
and —1 have multiplicative inverses in Z. In general, a multiplicative inverse of an ele-
ment a in a ring R with unity 1 # 0 is an element a~! € Rsuch that aa™! = a~la = 1.
Precisely as for groups, a multiplicative inverse for an element g in R is unique, if it
exists at all (see Exercise 45). Theorem 22.8 shows that it would be hopeless to have
a multiplicative inverse for 0 except for the ring {0}, where 0 + 0 = 0 and (0)(0) = 0,
with 0 as both additive and multiplicative identity element. We are thus led to discuss
the existence of multiplicative inverses for nonzero elements in a ring with nonzero
unity. There is unavoidably a lot of terminology to be defined in this introductory
section on rings. We are almost done.

Let R be aring with unity 1 # 0. An element « in R is a unit of R if it has a multiplicative
inverse in R. If every nonzero element of R is a unit, then R is a division ring (or skew
field). A field is a commutative division ring. A noncommutative division ring is called
a “strictly skew field.” | |

Let us find the units in Z4. Of course, 1 and —1 = 13 are units. Since (3)(5) = 1 we
see that 3 and 5 are units; therefore —3 = 11 and —5 = 9 are also units. None of the
remaining elements of Z;4 can be units, since no multiple of 2, 4, 6, 7, 8, or 10 can be
one more than a multiple of 14; they all have a common factor, either 2 or 7, with
14. Section 24 will show that the units in Z, are precisely those m € Z, such that
ged (m,n) = 1. A

Z is not a field, because 2, for example, has no multiplicative inverse, so 2 is not a unit
in Z. The only units in Z are 1 and —1. However, Q and R are fields. An example of a
strictly skew field is given in Section 32. A

We have the natural concepts of a subring of a ring and a subfield of a field. A
subring of a ring is a subset of the ring that is a ring under induced operations from the
whole ring; a subfield is defined similarly for a subset of a field. In fact, let us say here
once and for all that if we have a set, together with a certain specified type of algebraic
structure (group, ring, field, integral domain, vector space, and so on), then any subset
of this set, together with a natural induced algebraic structure that yields an algebraic
structure of the same type, is a substructure. If K and L are both structures, we shall let
K < L denote that K is a substructure of L and K < L denote that K < L but K # L.
Exercise 50 gives criteria for a subset S of a ring R to form a subring of R.
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m HISTORICAL NOTE

Ithough fields were implict in the early work

on the solvability of equations by Abel
and Galois, it was Leopold Kronecker (1823—
1891) who in connection with his own work
on this subject first published in 1881 a defi-
nition of what he called a “domain of rational-
ity”: “The domain of rationality (R’,R",R”,---)
contains every one of those quantities
which are rational functions of the quanti-
ties R,R’,R”,--- with integral coefficients.”
Kronecker, however, who insisted that any math-
ematical subject must be constructible in finitely
many steps, did not view the domain of ratio-
nality as a complete entity, but merely as a re-
gion in which took place various operations on its
elements.

Richard Dedekind (1831-1916), the inventor
of the Dedekind cut definition of a real number,

considered a field as a completed entity. In 1871,
he published the following definition in his sup-
plement to the second edition of Dirichlet’s text on
number theory: “By a field we mean any system of
infinitely many real or complex numbers, which in
itself is so closed and complete, that the addition,
subtraction, multiplication, and division of any two
numbers always produces a number of the same
system.” Both Kronecker and Dedekind had, how-
ever, dealt with their varying ideas of this notion as
early as the 1850s in their university lectures.

A more abstract definition of a field, similar to
the one in the text, was given by Heinrich Weber
(1842-1913) in a paper of 1893. Weber’s defini-
tion, unlike that of Dedekind, specifically included
fields with finitely many elements as well as other
fields, such as function fields, which were not sub-
fields of the field of complex numbers.

191

Finally, be careful not to confuse our use of the words unit and unity. Unity is
the multiplicative identity element, while a unit is any element having a multiplicative
inverse. Thus the multiplicative identity element or unity is a unit, but not every unit is
unity. For example, —1 is a unit in Z, but —1 is not unity, that is, —1 7# 1.

m EXERCISES 22

Computations
In Exercises 1 through 6, compute the product in the given ring.

1. (12)(16) in Zp4
3. (11)(—4) in Zy5
5. (2,3)(3,5)in Zs x Zo

2. (16)(3) in Z3,
4. (20)(—8) in Zy¢
6. (—3,5)2,—4)in Z4 x Z11

In Exercises 7 through 13, decide whether the indicated operations of addition and multiplication are defined
(closed) on the set, and give a ring structure. If a ring is not formed, tell why this is the case. If a ring is formed,
state whether the ring is commutative, whether it has unity, and whether it is a field.
7. nZ with the usual addition and multiplication
8. Z* with the usual addition and multiplication
9. Z x Z with addition and multiplication by components
10. 2Z x Z with addition and multiplication by components
11. {a + bv/2 | a,b € Z} with the usual addition and multiplication
12. {a + b+/2| a, b € Q} with the usual addition and multiplication
13. The set of all pure imaginary complex numbers ri for r € R with the usual addition and multiplication
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In Exercises 14 through 19, describe all units in the given ring

14.
17.

20.

21.
22,

23.
. Describe all ring homomorphisms of Z into Z x Z.

ERS

29.

30.

Z 15. Zx Z 16. Zs
Q 18. ZxQxZ 19. Zy
Consider the matrix ring M»(Z).

a. Find the order of the ring, that is, the number of elements in it.
b. List all units in the ring.

If possible, give an example of a homomorphism ¢ : R — R’ where R and R’ are rings with unity 1 0 and
1’ # (', and where ¢(1) # 0’ and ¢(1) # 1'.

(Linear algebra) Consider the map det of M,(R) into R where det(A) is the determinant of the matrix A for
A € M,(R). Is det a ring homomorphism? Why or why not?

Describe all ring homomorphisms of Z into Z.

. Describe all ring homomorphisms of Z x Z into Z.
. How many homomorphisms are there of Z x Z x Z into Z?
. Consider this solution of the equation X> = I3 in the ring M3(R).

X2 = I; implies X2 — I; = 0, the zero matrix, so factoring, we have (X — I3)(X + I3) = 0
whence either X = I3 or X = —Is.

Is this reasoning correct? If not, point out the error, and if possible, give a counterexample to the conclusion.

. Find all solutions of the equation x> 4 x — 6 = 0 in the ring Z14 by factoring the quadratic polynomial. Com-

pare with Exercise 27.

Find all solutions to the equations x2 + x — 6 = 0 in the ring Z;3 by factoring the quadratic polynomial. Why
are there not the same number of solutions in Exercise 28?

‘What is wrong with the following attempt at a proof of Property 2 in Theorem 22.8?
(—a)b = (—Da)b = (—1)(ab) = —(ab).

Concepts

In Exercises 31 and 32, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

31
32.
33.
34,

3s.

A field F is aring with nonzero unity such that the set of nonzero elements of F is a group under multiplication.
A unit in a ring is an element of magnitude 1.

Give an example of a ring having two elements a and b such that ab = 0 but neither a nor b is zero.

Give an example of a ring with unity 1 # O that has a subring with nonzero unity 1’ # 1. [Hint: Consider a
direct product, or a subring of Zg.]

Determine whether each of the following is true or false.

a. Every field is also a ring.
b. Every ring has a multiplicative identity.
c. Every ring with unity has at least two units.
d. Every ring with unity has at most two units.
e. Itis possible for a subset of some field to be a ring but not a subfield, under the induced operations.
f. The distributive laws for a ring are not very important.
g. Multiplication in a field is commutative.
h. The nonzero elements of a field form a group under the multiplication in the field.
i. Addition in every ring is commutative.
j- Every element in a ring has an additive inverse.
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36.

37.
38.

39.

40.
41.
42.
43.

4.

47

49.
50.

51.

52.
53.

54,

55.

56.

Show that the multiplication defined on the set F of functions in Example 22.4 satisfies axioms .72, and .23
for a ring.

Show that the evaluation map ¢, of Example 22.10 is a ring homomorphism.

Complete the argument outlined after Definitions 22.12 to show that isomorphism gives an equivalence relation
on a collection of rings.

Show that if U is the collection of all units in a ring (R, +, -) with unity, then (U, -) is a group. [Warning: Be
sure to show that U is closed under multiplication.]

Show that > — b? = (a + b)(a — b) for all a and b in a ring R if and only if R is commutative.
Let (R, +) be an abelian group. Show that (R, +, -) is a ring if we define ab = O for all a,b € R.
Show that the rings 2Z and 3Z are not isomorphic. Show that the fields R and C are not isomorphic.

(Freshman exponentiation) Let p be a prime. Show that in the ring Z, we have (a + b)’ = aP + b? for all
a,b € Zp. [Hint: Observe that the usual binomial expansion for (a + b)" is valid in a commutative ring.]

Show that the unity element in a subfield of a field must be the unity of the whole field, in contrast to Exer-
cise 34 for rings.

Show that the multiplicative inverse of a unit in a ring with unity is unique.

An element g of a ring R is idempotent if a> = a.

a. Show that the set of all idempotent elements of a commutative ring is closed under multiplication.
b. Find all idempotents in the ring Zg x Z;;.

(Linear algebra) Recall that for an m x n matrix A, the transpose AT of A is the matrix whose jth column
is the jth row of A. Show that if A is an m x n matrix such that A”A is invertible, then the projection matrix
P = A(ATA)~'AT is an idempotent in the ring of n x n matrices.

An element a of a ring R is nilpotent if a” = 0 for some n € Z*. Show that if a and b are nilpotent elements
of a commutative ring, then a + b is also nilpotent.

Show that a ring R has no nonzero nilpotent element if and only if 0 is the only solution of x> = 0 in R.
Show that a subset S of a ring R gives a subring of R if and only if the following hold:

0esS;
(a—b)e Sforalla,b e S;
ab e Sforalla,b € S.
a. Show that an intersection of subrings of a ring R is again a subring of R.
b. Show that an intersection of subfields of a field F is again a subfield of F.
Let R be aring, and let a be a fixed element of R. Let I, = {x € R|ax = 0}. Show that I, is a subring of R.

Let R be a ring, and let a be a fixed element of R. Let R, be the subring of R that is the intersection of all
subrings of R containing a (see Exercise 51). The ring R, is the subring of R generated by a. Show that the
abelian group (R, +) is generated (in the sense of Section 7) by {a" | n € Z*}.

(Chinese Remainder Theorem for two congruences) Let r and s be positive integers such that gcd(r,s) = 1.
Use the isomorphism in Example 22.15 to show that for m,n € Z, there exists an integer x such that x = m
(mod r) and x = n (mod s).

a. State and prove the generalization of Example 22.15 for a direct product with n factors.

b. Prove the Chinese Remainder Theorem: Let a;, b; € Z* fori =1,2,--- ,n and let ged(bi, bj) = 1fori # j.
Then there exists x € Z* such that x = g; (mod b;) fori = 1,2,--- ,n.

Consider (S, +, -), where S is a set and + and - are binary operations on S such that
(S, +) is a group,
(S*, ) is a group where S* consists of all elements of S except the additive identity element,
a(b + ¢) = (ab) + (ac) and (a + b)c = (ac) + (bc) for all a, b, c € S.
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Show that (S, +, ) is a division ring. [Hint: Apply the distributive laws to (1 + 1)(a + b) to prove the commu-
tativity of addition.]

A ring R is a Boolean ring if > = a for all a € R, so that every element is idempotent. Show that every
Boolean ring is commutative.

(For students having some knowledge of the laws of set theory) For a set S, let & (S) be the collection of all
subsets of S. Let binary operations + and - on & (S) be defined by

A+B=(AUB)—(ANB)={x|x€Aorx € Bbutx ¢ (ANB)}
and
A-B=ANB
forA,B € & (S).

a. Give the tables for + and - for & (S), where S = {a, b}. [Hint: & (S) has four elements.]
b. Show that for any set S, (Z” (S), +, -) is a Boolean ring (see Exercise 57).

SECTION 23 INTEGRAL DOMAINS
While a careful treatment of polynomials is not given until Section 27, for purposes of
motivation we shall make intuitive use of them in this section.
Divisors of Zero and Cancellation

One of the most important algebraic properties of our usual number system is that a
product of two numbers can be 0 only if at least one of the factors is 0. We have used
this fact many times in solving equations, perhaps without realizing that we were using
it. Suppose, for example, we are asked to solve the equation

¥ —5x+6=0.
The first thing we do is factor the left side:
¥ —5x+6=(x—2)(x—3).

Then we conclude that the only possible values for x are 2 and 3. Why? The reason is
that if x is replaced by any number a, the product (a — 2)(a — 3) of the resulting numbers
is 0 if and only if eithera —2 =0ora — 3 =0.

23.1 Example  Solve the equation x> — 5x + 6 = 0 in Zy,.

Solution  The factorization x2 — 5x + 6 = (x — 2)(x — 3) is still valid if we think of x as standing
for any number in Z;,. But in Z,, not only is Oa = a0 = 0 for all a € Z;,, but also
2)(6) = (6)(2) =3 = DB = B)® = ®)3)
= (4)(6) = (6)(4) = (D) = (9@) = (6)(6) = (6)(8)
= (8)(6) = (6)(10) = (10)(6) = (8)(9) = (9)(8) = 0.
We find, in fact, that our equation has not only 2 and 3 as solutions, but also 6 and 11,

for (6 — 2)(6 — 3) = (4)(3) = O and (11 — 2)(11 — 3) = (9)(8) = Oin Zy. A

These ideas are of such importance that we formalize them in a definition.

23.2 Definition If a and b are two nonzero elements of a ring R such that ab = 0, then a and b are
divisors of 0 (or 0 divisors). [ ]
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Example 23.1 shows that in Z;, the elements 2, 3, 4, 6, 8, 9, and 10 are divisors of
0. Note that these are exactly the numbers in Z,, that are not relatively prime to 12, that
is, whose gcd with 12 is not 1.

If R is a ring with unity and a is a unit in R, then a is not a divisor of 0. To see this,
note that if ab = 0, then a~'ab = 0, so b = 0. Similarly, if ba = 0, then baa~! = 0, so
b = 0. Theorem 23.3 shows that in the ring Z, every element is either 0, a unit, or a 0
divisor.

Let m € Z,. Either m = 0, m is relatively prime to n, in which case m is a unit in Z,, or
m is not relatively prime to n, in which case m is a 0 divisor in Z,.

‘We first suppose that m # 0 and gcd(m, n) = d # 1. Then, using integer multiplication

n(3)= ()
is a multiple of n, so in Z,,
n(2)=0ez,

Neither m nor n/d is 0 in Z,,. Thus m is a divisor of 0.

Now suppose that gcd(m,n) = 1. Then there are integers @ and b such that
an + bm = 1. By the division algorithm, there are integers g and r such that 0 <
r <n—1and b = nqg+ r. We can write

rm = (b — ng)m = bm — ngm = (1 — an) — ngm = 1 — n(a + gm).
Soin Z,, rm = mr = 1 and m is a unit. *

Classify each nonzero element of Z as a unit or a 0 divisor.

The greatest common divisor of m and 20is 1 if m =1,3,7,9,11,13,17, 19, so these
are all units. For m = 2,4,5,6,8, 10, 12, 14, 15, 16, 18, gcd(m, 20) > 1, so these are all
0 divisors. We see that

1-1=3.7=9-9=11-11=13-17=19-19=1€ Zy
which verifies that each is a unit. We also see that
2:10=4-5=6-10=8-15=12-5=14-10=16-5=18-10=0€ Zy
which verifies that each of these is a 0 divisor in Zyg. A
If p is a prime number, then every nonzero element of Z, is a unit, which means that Z,
is a field and it has no divisors of 0.
Forany 0 <m < p — 1, ged(m,p) = 1. So m is a unit in Z, by Theorem 23.3. L 4

The preceding corollary shows that when we consider the ring M, (Z,), we are talk-
ing about a ring of matrices over a field. In the typical undergraduate linear algebra
course, only the field properties of the real or complex numbers are used in much of the
work. Such notions as matrix reduction to solve linear systems, determinants, Cramer’s
rule, eigenvalues and eigenvectors, and similarity transformations to try to diagonalize a
matrix are valid using matrices over any field; they depend only on the arithmetic prop-
erties of a field. Considerations of linear algebra involving notions of magnitude, such
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as least-squares approximate solutions or orthonormal bases, make sense only when
using fields where we have an idea of magnitude. The relation

p-l=1+14---4+1=0
p summands

indicates that there can be no very natural notion of magnitude in the field Z,.

Another indication of the importance of the concept of 0 divisors is shown in the
following theorem. Let R be a ring, and let a, b, ¢ € R. The cancellation laws hold in
R if ab = ac with a # 0 implies b = ¢, and ba = ca with a # 0 implies b = c. These
are multiplicative cancellation laws. Of course, the additive cancellation laws hold in R,
since (R, +) is a group.

The cancellation laws hold in a ring R if and only if R has no divisors of 0.

Let R be a ring in which the cancellation laws hold, and suppose ab = 0 for some
a,b € R. We must show that either a or b is 0. If a # 0, then ab = a0 implies that b = 0
by cancellation laws. Therefore, eithera = 0 or b = 0.

Conversely, suppose that R has no divisors of 0, and suppose that ab = ac with
a # 0. Then

ab—ac=al-c)=0.

Since a # 0, and since R has no divisors of 0, we must have b — ¢ =0, so b = c.

A similar argument shows that ba = ca with a # 0 implies b = c. *

Suppose that R is a ring with no divisors of 0. Then an equation ax = b, witha # 0,
in R can have at most one solution x in R, for if ax; = b and ax, = b, then ax; = ax,,
and by Theorem 23.6 x; = x, since R has no divisors of 0. If R has unity 1 # O and a is
a unit in R with multiplicative inverse a1, then the solution x of ax = b is a~'b. In the
case that R is commutative, in particular if R is a field, it is customary to denote a b
and ba~! (they are equal by commutativity) by the formal quotient b/a. This quotient
notation must not be used in the event that R is not commutative, for then we do not
know whether b/a denotes a~1b or ba~'. In particular, the multiplicative inverse a=! of
a nonzero element a of a field may be written 1/a.

Integral Domains

The integers are really our most familiar number system. In terms of the algebraic prop-
erties we are discussing, Z is a commutative ring with unity and no divisors of 0. Surely
this is responsible for the name that the next definition gives to such a structure.

An integral domain D is a commutative ring with unity 1 7 0 that contains no divisors
of 0. ||

Thus, if the coefficients of a polynomial are from an integral domain, one can solve
a polynomial equation in which the polynomial can be factored into linear factors in
the usual fashion by setting each factor equal to 0.

In our hierarchy of algebraic structures, an integral domain belongs between a com-
mutative ring with unity and a field, as we shall show. Theorem 23.6 shows that the
cancellation laws for multiplication hold in an integral domain.

We have seen that Z and Z, for any prime p are integral domains, but Z, is not an
integral domain if n is not prime. A moment of thought shows that the direct product
R x S of two nonzero rings R and S is not an integral domain. Just observe that for r € R
and s € S both nonzero, we have (r, 0)(0, s) = (0, 0). A
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23.9 Example Show that although Z, is an integral domain, the matrix ring M»(Z,) has divisors of
Zero.

Solution We need only observe that
(o) 0)-( o)
0 0/\1 0 00 A

In a field, every nonzero element is a unit. We saw that units cannot be divisors of
0, so in a field there are no divisors of 0. Since multiplication in a field is commutative,
every field is an integral domain.

Figure 23.10 gives a Venn diagram view of containment for the algebraic structures
having two binary operations with which we will be chiefly concerned. In Exercise 26
we ask you to redraw this figure to include strictly skew fields as well.

We have seen that Q, R, C, and Z, for p a prime number are all fields. Theorem
23.3 implies that if Z,, is an integral domain, then Z, is a field. In fact, the next theorem
says that any finite integral domain is a field. The proof of this theorem is a personal

favorite of both authors. It is done by counting, one of the most powerful techniques in
mathematics.

Commutative 2
rings

Domains

23.10 Figure A collection of rings.

23.11 Theorem Every finite integral domain is a field.

Proof Let R be a finite integral domain and a a nonzero element of R. We wish to show there
is an element b € R such that ab = 1. To this end, we define a function f : R — R by

f(x) =ax.
‘We first show that f is a one-to-one function. Suppose that f(x;) = f(x2), then
ax; = ax;
X=X

since a # 0 and cancellation holds in an integral domain. Thus f is one-to-one. Since
R is finite and f : R — R is one-to-one, f must also map onto R. Therefore, there is a
b € R such that

1=f(a)=ab=ba

which verifies that a is a unit. *
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The finite condition in Theorem 23.11 is necessary since Z is an infinite integral
domain, which is not a field. The counting argument fails in the case where the integral
domain is infinite since there are one-to-one functions from an infinite set to itself that
are not onto. For example, multiplication by 2 is a one-to-one function mapping Z to Z,
but 1 is not in the range of the function.

In Section 39 we will see that other than Z, there are many finite integral domains
and therefore fields.

The Characteristic of a Ring

Let R be any ring. We might ask whether there is a positive integer n such thatn -a =0
for all a € R, where n - a means a + a + - - - + a for n summands, as explained in Sec-
tion 22. For example, the integer m has this property for the ring Z,,.

If for a ring R a positive integer n exists such that n - a = 0 for all a € R, then the least
such positive integer is the characteristic of the ring R. If no such positive integer
exists, then R is of characteristic 0. u

We shall use the concept of a characteristic chiefly for fields. Exercise 35 asks us
to show that the characteristic of an integral domain is either O or a prime p.
The ring Z, is of characteristic n, while Z, Q, R, and C all have characteristic 0. A

At first glance, determination of the characteristic of a ring seems to be a tough job,
unless the ring is obviously of characteristic 0. Do we have to examine every element a
of the ring in accordance with Definition 23.12? Our final theorem of this section shows
that if the ring has unity, it suffices to examine only a = 1.

Let R be a ring with unity. If n- 1 # 0 for all n € Z™, then R has characteristic 0. If
n-1 =0 for some n € Z*, then the smallest such integer n is the characteristic of R.

If n- 1 # 0 for all n € Z*, then surely we cannot have n - a = 0 for all a € R for some
positive integer n, so by Definition 23.12, R has characteristic 0.
Suppose that n is a positive integer such that n - 1 = 0. Then for any a € R, we have

n-a=a+a+---+a=all+14+---+1)=am-1)=a0=0.
Our theorem follows directly. *

m EXERCISES 23

Computations

1. Find all solutions of the equation x> — 2x? — 3x = 0 in Zy5.
2. Solve the equation 3x = 2 in the field Z7; in the field Z;3.
3. Find all solutions of the equation x> + 2x + 2 = 0 in Z.

4. Find all solutions of x> + 2x +4 = 0 in Zg.

In Exercises 5 through 10, find the characteristic of the given ring.

5. 2Z
8. Z3 X Z3

6. ZxXZ 7. Z3 x 3Z
9. Z3 X Z4 10. Z6 X Z15
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In Exercises 11 through 16, classify each nonzero element of the ring as a unit, a divisor of 0, or neither.

11. Zs 12. Zg 13. Zss
14. Z 15. Z3 X Z3 16. Z4 X Z5

17. Let R be a commutative ring with unity of characteristic 4. Compute and simplify (a + b)* for a,b € R.
18. Let R be a commutative ring with unity of characteristic 3. Compute and simplify (@ + b)° for a,b € R.
19. Let R be a commutative ring with unity of characteristic 3. Compute and simplify (@ + b)® for a,b € R.

20. Show that the matrix [; i] is a divisor of zero in M, (Z).
Concepts
In Exercises 21 and 22, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.
21. If ab = 0, then a and b are divisors of zero.
22. If n- a = O for all elements a in a ring R, then n is the characteristic of R.
23. Determine whether each of the following is true or false.
a. nZ has zero divisors if n is not prime.
b. Every field is an integral domain.
¢. The characteristic of nZ is n.
d. As aring, Z is isomorphic to nZ for alln > 1.
e. The cancellation law holds in any ring that is isomorphic to an integral domain.
f. Every integral domain of characteristic 0 is infinite.
g. The direct product of two integral domains is again an integral domain.
h. A divisor of zero in a commutative ring with unity can have no multiplicative inverse.
i. nZ is a subdomain of Z.
jo Zis a subfield of Q.
24. Each of the six numbered regions in Fig. 23.10 corresponds to a certain type of a ring. Give an example of a

ring in each of the six cells. For example, a ring in the region numbered 3 must be commutative (it is inside
the commutative circle), have unity, but not be an integral domain.

25. (For students who have had a semester of linear algebra) Let F be a field. Give five different characterizations
of the elements A of M,(F) that are divisors of 0.

26. Redraw Fig. 23.10 to include a subset corresponding to strictly skew fields.

Proof Synopsis
27. Give a one-sentence synopsis of the proof of the “if” part of Theorem 23.6.
28. Give a two-sentence synopsis of the proof of Theorem 23.11.

Theory

29. An element a of a ring R is idempotent if a> = a. Show that a division ring contains exactly two idempotent
elements.

30. Show that an intersection of subdomains of an integral domain D is again a subdomain of D.

31. Show that a finite ring R with unity 1 # 0 and no divisors of 0 is a division ring. (It is actually a field,
although commutativity is not easy to prove. See Theorem 32.10.) [Note: In your proof, to show that a # 0
is a unit, you must show that a “left multiplicative inverse” of a # 0 in R is also a “right multiplicative
inverse.”]
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32.

33.
34,

3s.

36.

Part V  Rings and Fields

Let R be a ring that contains at least two elements. Suppose for each nonzero a € R, there exists a unique
b € R such that aba = a.

a. Show that R has no divisors of 0.

b. Show that bab = b.

c. Show that R has unity.

d. Show that R is a division ring.

Show that the characteristic of a subdomain of an integral domain D is equal to the characteristic of D.

Show that if D is an integral domain, then {n - 1 |n € Z} is a subdomain of D contained in every subdomain
of D.

Show that the characteristic of an integral domain D must be either 0 or a prime p. [Hint: If the characteristic
of D is mn, consider (m - 1)(n - 1) in D.]

This exercise shows that every ring R can be enlarged (if necessary) to a ring S with unity, having the same
characteristic as R. Let § = R x Z if R has characteristic 0, and R x Z, if R has characteristic n. Let addition
in § be the usual addition by components, and let multiplication be defined by

(r1,m)(r2,m) = (rira +ny - ry +my - 11, nyng)
where n - r has the meaning explained in Section 22.

a. Show that S is a ring.

b. Show that S has unity.

¢. Show that S and R have the same characteristic.

d. Show that the map ¢ : R — S given by ¢(r) = (,0) for r € R maps R isomorphically onto a subring of S.

SECTION 24 FERMAT’S AND EULER’S THEOREMS
Fermat’s Theorem

‘We know that as additive groups, Z, and Z/nZ are naturally isomorphic, with the coset
a + nZ corresponding to a for each a € Z,. Furthermore, addition of cosets in Z/nZ
may be performed by choosing any representatives, adding them in Z, and finding the
coset of nZ containing their sum. It is easy to see that Z/nZ can be made into a ring by
multiplying cosets in the same fashion, that is, by multiplying any chosen representa-
tives. While we will be showing this later in a more general situation, we do this special
case now. We need only show that such coset multiplication is well defined, because the
associativity of multiplication and the distributive laws will follow immediately from
those properties of the chosen representatives in Z. To this end, choose representatives
a + rn and b + sn, rather than a and b, from the cosets a + nZ and b + nZ. Then

(a + m)(b + sn) = ab + (as + rb + rsn)n,

which is also an element of ab + nZ. Thus the multiplication is well-defined, and our
cosets form a ring isomorphic to the ring Z,.

Exercise 39 in Section 22 asks us to show that the units in a ring form a group
under the multiplication operation of the ring. This is a very useful fact that we will use
to provide simple proofs for both Fermat’s Little Theorem and Euler’s generalization.
We start with Fermat’s Theorem.

24.1 Theorem (Little Theorem of Fermat) If a € Z and p is a prime not dividing a, then p divides
a?~! — 1, thatis, a?~! = 1 (mod p) for a # 0 (mod p).

Proof The ring Z, is a field, which implies that all the nonzero elements are units. Thus (Z3, -)
is a group with p — 1 elements. Any b in the group Z; has order a divisor of |Z;| =
p — 1. Therefore



Section 24 Fermat’s and Euler’s Theorems 201

—1
b =1€Z,

The rings Z, and Z/pZ are isomorphic where the element b € Z, corresponds to
the coset b + pZ. For any integer a that is not a multiple of p, a + pZ = b + pZ for

some 0 < b < p — 1. Thus

(@+pZy~' =(b+pZy~' =1+pZe Z/pL.

In other words,

aP™! = 1 (mod p).

The corollary follows from Theorem 24.1 if @ # 0 (mod p). If a = 0 (mod p), then both
L

24.2 Corollary If a € Z, then a” = a (mod p) for any prime p.
Proof
sides reduce to 0 modulo p.
24.3 Example

have

Let us compute the remainder of 8! when divided by 13. Using Fermat’s theorem, we

8103 = (812)3(8") = (1%)87) = 87 = (=5)’
= (25)°(=5) = (=1)*(=5) = 5 (mod 13).

m HISTORICAL NOTE

he statement of Theorem 24.1 occurs in a

letter from Pierre de Fermat (1601-1665)
to Bernard Frenicle de Bessy, dated 18 October
1640. Fermat’s version of the theorem was that
for any prime p and any geometric progression
a,a%,---,d,--- ,there is a least number a” of the
progression such that p divides a” — 1. Further-
more, T divides p — 1 and p also divides all num-
bers of the form aX” — 1. (It is curious that Fermat
failed to note the condition that p not divide a; per-
haps he felt that it was obvious that the result fails
in that case.)

Fermat did not in the letter or elsewhere indi-
cate a proof of the result and, in fact, never men-
tioned it again. But we can infer from other parts

of this correspondence that Fermat’s interest in this
result came from his study of perfect numbers.
(A perfect number is a positive integer m that is
the sum of all of its divisors less than m; for ex-
ample, 6 = 1 + 2 + 3 is a perfect number.) Euclid
had shown that 2"~!(2" — 1) is perfect if 2" — 1
is prime. The question then was to find methods
for determining whether 2" — 1 was prime. Fermat
noted that 2" — 1 was composite if  is composite,
and then derived from his theorem the result that if
n is prime, the only possible divisors of 2" — 1 are
those of the form 2kn + 1. From this result he was
able quickly to show, for example, that 237 — 1 was
divisible by 223 =2-3-37 + 1.

24.4 Example

Show that 2'213 — 1 is not divisible by 11.

Solution By Fermat’s theorem, 2!° = 1 (mod 11), so

211,213 1= [(210)1,121 . 23] 1= [11,121 . 23] -1
=2-1=8-1=7(mod 11).

Thus the remainder of 2!1?13 — 1 when divided by 11 is 7, not 0. (The number 11,213
is prime, and it has been shown that 2!2!3 — 1 is a prime number. Primes of the form
2P — 1 where p is prime are known as Mersenne primes.)
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Show that for every integer 7, the number n33 — n is divisible by 15.

This seems like an incredible result. It means that 15 divides 23 — 2,3% — 3,473 — 4,
etc.

Now 15 = 3 - 5, and we shall use Fermat’s theorem to show that n3> — n is divisible
by both 3 and 5 for every n. Note that n33 — n = n(n32 — 1).

If 3 divides n, then surely 3 divides n(n*?> — 1). If 3 does not divide n, then by
Fermat’s theorem, n2 = 1 (mod 3) so

- 1=@E)%—1=1"%—1=0(mod3),

and hence 3 divides n32 — 1.
If n = 0 (mod 5), then n®* — n = 0 (mod 5). If n # 0 (mod 5), then by Fermat’s
theorem, n* = 1 (mod 5), so

2 —1=mP¥-1=12—1=0(mod5).

Thus n3* — n = 0 (mod 5) for every n also. A

Euler’s Generalization

Theorem 23.3 classifies all the elements in Z, into three categories. An element & in Z,
is either 0, a unit if the gcd(n, k) = 1, or else a divisor of 0 if gcd(n, k) > 1. Exercise 39
in Section 22 shows that the units in a ring form a group under multiplication. Therefore,
the set of nonzero elements in Z,, which are relatively prime to r, form a multiplicative
group. Euler’s generalization of Fermat’s theorem is based on the number of units in Z,.

Let n be a positive integer. Let ¢(n) be defined as the number of positive integers
less than or equal to r and relatively prime to n. Note that ¢(1) = 1.

Let n = 12. The positive integers less than or equal to 12 and relatively prime to 12 are
1,5,7,and 11, so ¢(12) = 4. N

By Theorem 23.3, ¢(n) is the number of nonzero elements of Z, that are not
divisors of 0. This function ¢ : Z* — Z% is the Euler phi-function. We can now de-
scribe Euler’s generalization of Fermat’s theorem.

(Euler’s Theorem) If a is an integer relatively prime to n, then a?™ — 1 is divisible
by n, that is, a*™ = 1 (mod n).

If a is relatively prime to n, then the coset a + nZ of nZ containing a contains an integer
b < n and relatively prime to n. Using the fact that multiplication of these cosets by
multiplication modulo r of representatives is well-defined, we have

a*® = p*™ (mod n).

But by Theorem 23.3, b can be viewed as an element of the multiplicative group G, of
order ¢(n) consisting of the ¢(n) elements of Z, relatively prime to n. Thus

"™ = 1 (mod n),
and our theorem follows. *

Let n = 12. We saw in Example 24.6 that ¢(12) = 4. Thus if we take any integer a
relatively prime to 12, then a* = 1 (mod 12). For example, with @ = 7, we have 74 =
(49)? = 2,401 = 12(200) + 1,50 7* = 1 (mod 12). Of course, the easy way to compute
74 (mod 12), without using Euler’s theorem, is to compute it in Zj5. In Z;5, we have
7=-5s0

P==5'=06%=1 ad T7T*=12=1 A
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Application to ax = b (mod m)

We can find all solutions of a linear congruence ax = b (mod m). We prefer to work
with an equation in Z,, and interpret the results for congruences.

Let m be a positive integer and let a € Z,, be relatively prime to m. For each b € Z,,
the equation ax = b has a unique solution in Z,,.

By Theorem 23.3, a is a unit in Z,, and s = @b is certainly a solution of the equation.
Multiplying both sides of ax = b on the left by a~!, we see this is the only solution.
L 4

Interpreting this theorem for congruences, we obtain at once the following
corollary.

If a and m are relatively prime integers, then for any integer b, the congruence ax =
b (mod m) has as solutions all integers in precisely one residue class modulo rm. ¢

Theorem 24.9 serves as a lemma for the general case.

Let m be a positive integer and let a, b € Z,,. Let d be the gcd of a and m. The equation
ax = b has a solution in Z,, if and only if d divides b. When d divides b, the equation
has exactly d solutions in Z,,.

First we show there is no solution of ax = b in Z,, unless d divides b. Suppose s € Z,,
is a solution. Then as — b = gm in Z, so b = as — gm. Since d divides both a and m, we
see that d divides the right-hand side of the equation b = as — gm, and hence divides b.
Thus a solution s can exist only if d divides b.

Suppose now that d does divide b. Let

a=aid, b=bid, and m=myd.

Then the equation as — b = gm in Z can be rewritten as d(a;s — b1) = dqm,. We see
that as — b is a multiple of m if and only if a;s — b, is a multiple of m,. Thus the solu-
tions s of ax = b in Z,, are precisely the elements that, read modulo m;,, yield solutions
of ajx = b in Z,,,. Now let s € Z,,, be the unique solution of a;x = b, in Z,, given by
Theorem 24.9. The numbers in Z,, that reduce to s modulo m; are precisely those that
can be computed in Z,, as

s, 8 +my,s+2my,s+3my,--- ,s+(d— D)m;.

Thus there are exactly d solutions of the equation in Z,,. L 4

Theorem 24.11 gives us at once this classical result on the solutions of a linear
congruence.

Let d be the ged of positive integers a and m. The congruence ax = b (mod m) has a
solution if and only if d divides b. When this is the case, the solutions are the integers
in exactly d distinct residue classes modulo m. ¢

Actually, our proof of Theorem 24.11 shows a bit more about the solutions of
ax = b (mod m) than we stated in this corollary; namely, it shows that if any solu-
tion s is found, then the solutions are precisely all elements of the residue classes
(s + km;) + (mZ) where m; = m/d and k runs through the integers from 0 to d — 1.
It also tells us that we can find such an s by finding a@; = a/d and b; = b/d, and solving
a;x = b; (mod m,). To solve this congruence, we may consider a; and b, to be replaced
by their remainders modulo m, and solve the equation a;x = b; in Z,, .
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Find all solutions of the congruence 12x = 27 (mod 18).

The ged of 12 and 18 is 6, and 6 is not a divisor of 27. Thus by the preceding corollary,
there are no solutions.

Find all solutions of the congruence 15x = 27 (mod 18).

The ged of 15 and 18 is 3, and 3 does divide 27. Proceeding as explained before Ex-
ample 24.13, we divide everything by 3 and consider the congruence 5x = 9 (mod 6),
which amounts to solving the equation 5x = 3 in Z¢. Now the units in Zg are 1 and
5, and 5 is clearly its own inverse in this group of units. Thus the solution in Zg is
x = (5"1(3) = (5)(3) = 3. Consequently, the solutions of 15x = 27 (mod 18) are the
integers in the three residue classes

3+18Z=1{---,-33,-15,3,21,39,---},
9+18Z=1{---,-27,-9,9,27,45,---}.
15+ 18Z={---,-21,-3,15,33,51,---},
illustrating Corollary 24.12. Note the d = 3 solutions 3, 9, and 15 in Z;g. All the
solutions in the three displayed residue classes modulo 18 can be collected in the

one residue class 3 + 6Z modulo 6, for they came from the solution x = 3 of 5x =3
in Zg. A

m EXERCISES 24

Computations

‘We will see later that the multiplicative group of nonzero elements of a finite field is cyclic. Illustrate this by finding
a generator for this group for the given finite field.

7.
8.
9.
10.

L Y

Z7

2. Ziy 3. Z17

. Using Fermat’s theorem, find the remainder of 3*” when it is divided by 23.
. Use Fermat’s theorem to find the remainder of 37*° when it is divided by 7.

. Compute the remainder of 2%'") + 1 when divided by 19. [Hint: You will need to compute the remainder of
217 modulo 18.]

Make a table of values of ¢(n) for n < 30.
Compute ¢(p?) where p is a prime.

Compute ¢(pq) where both p and g are primes.

Use Euler’s generalization of Fermat’s theorem to find the remainder of 7% when divided by 24.

In Exercises 11 through 18, describe all solutions of the given congruence, as we did in Examples 24.13 and 24.14.

11.
13.
15.
17.
19.
20.
21.
22,

2x = 6 (mod 4) 12. 22x = 5 (mod 15)
36x = 15 (mod 24) 14. 45x = 15 (mod 24)
39x = 125 (mod 9) 16. 41x = 125 (mod 9)
155x = 75 (mod 65) 18. 39x = 52 (mod 130)

Let p be a prime >3. Use Exercise 28 below to find the remainder of (p — 2)! modulo p.

Using Exercise 28 below, find the remainder of 34! modulo 37.

Using Exercise 28 below, find the remainder of 49! modulo 53.

Using Exercise 28 below, find the remainder of 24! modulo 29.
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23. Determine whether each of the following is true or false.

a. aP~! = 1 (mod p) for all integers a and primes p.

b. a?~! = 1 (mod p) for all integers a such that a % 0 (mod p) for a prime p.
c. p(n) <nforalln e Z*.

d. p(n) <n—1foralln e Z*.

e. The units in Z, are the positive integers less than n and relatively prime to n.
f. The product of two units in Z, is always a unit.

g. The product of two nonunits in Z, may be a unit.

h. The product of a unit and a nonunit in Z, is never a unit.

i. Every congruence ax = b (mod p), where p is a prime, has a solution.

j- Let d be the gcd of positive integers a and m. If d divides b, then the congruence ax = b (mod m) has
exactly d incongruent solutions.

24. Give the group multiplication table for the multiplicative group of units in Zi2. To which group of order 4 is it

isomorphic?

Proof Synopsis

25. Give a one-sentence synopsis of the proof of Theorem 24.1.

26. Give a one-sentence synopsis of the proof of Theorem 24.7.

Theory

27. Show that 1 and p — 1 are the only elements of the field Z, that are their own multiplicative inverse. [Hint:
Consider the equation x> — 1 = 0.]

28. Using Exercise 27, deduce the half of Wilson’s theorem that states that if p is a prime, then (p — 1)! = —1
(mod p). [The other half states that if » is an integer >1 such that (n — 1)! = —1 (mod n), then n is a prime.
Just think what the remainder of (n — 1)! would be modulo  if 7 is not a prime.]

29. Use Fermat’s theorem to show that for any positive integer n, the integer n3’ — n is divisible by 383838. [Hint:
383838 = (37)(19)(13)(7)(3)(2).]

30. Referring to Exercise 29, find a number larger than 383838 that divides n3” — n for all positive integers n.

SECTION 25

ENCRYPTION

An encryption scheme is a method to disguise a message so that it is extremely difficult
for anyone other than the intended receiver to read. The sender encrypts the message
and the receiver decrypts the message. One method, called cypher encryption, requires
the sender to use a permutation of the letters in the alphabet to replace each letter with a
different letter. The receiver then uses the inverse of the permutation to recover the orig-
inal message. This method has two major weaknesses. First, both the sender and the
receiver need to know the permutation, but no one else should know the permutation or
else the message is not secure. It would be difficult to implement a cypher for a trans-
action when a company wishes to receive many orders each day, each using a different
permutation that only the customer and the company know. Furthermore, cyphers are
generally not difficult to crack. In fact, some newspapers carry a daily puzzle, which is
essentially decrypting an encrypted message.

Researchers in the second half of the twentieth century sought a method that allows
the receiver to publish public information that any sender could use to encrypt a mes-
sage, yet only the receiver could decrypt it. This means that knowing how a message
was encrypted is little help in decryption. This method relies on a function that is easy
for computers to compute, but whose inverse is virtually impossible to compute without
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more information. Functions of this type are called trap door functions. Most commer-
cial online transactions are communicated with trap door functions. This allows anyone
to make a secure credit card purchase with little risk of a third party gaining private
information.

RSA Public and Private Keys

Euler’s generalization of Fermat’s Theorem is the basis of a very common trap door
encryption scheme referred to as RSA encryption. RSA comes from the names of the
three inventors of the system, Ron Rivest, Adi Shamir, and Leonard Adleman. The trap
door function relies on the fact that it is easy to multiply two large prime numbers, but
if you are only given their product, it is very difficult to factor the number to recover
the two prime numbers. The following theorem is the key to this encryption scheme.

Let n = pg where p and q are distinct prime numbers. If a € Z with ged(a, pg) = 1 and
w =1 (mod (p — 1)(g — 1)), then a* = a (mod n).

Since w = 1 (mod (p — 1)(g — 1)), we can write
w=k(p—1)g—1+1

for some integer k. Recall that the Euler phi-function ¢(r) counts the number of positive
integers less than or equal to n that are relatively prime to n. Since n = pg, we can
compute ¢(pg) by subtracting the number of integers less than n that are divisible by
either p or g from n — 1. There are p — 1 multiples of g and g — 1 multiples of p that
are less than pq. Furthermore, the least common multiple of p and g is pq since p and g
are distinct primes. Thus

e =@Pg-H—-@-D-@-1
=pg—p—q+1
=@-D@g-D.

By Euler’s Theorem (Theorem 24.7),
a" = gkP-Dig-D+1

=a (a(p—lxq—n)"

—a (a¢(,,>)k

= a(1%)

= a (mod n). *
The RSA encryption scheme requires two sets of positive integers called the private
key and the public key. The private key is known only by the person who will receive

the message, and the public key is available to anyone who wishes to send a message to
the receiver.

The private key consists of

e Two prime numbers p and g with p # g.
® The product n = pq.
® Aninteger 1 <r < (p — 1)(g — 1) — 1 that is relatively prime to (p — 1)(q — 1).

We know that r has an inverse in Z,_1y,—1) since r is relatively prime to

—-D@g-D.
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The public key consists of

® The integer s where 1 < s < (p — 1)(g — 1) and s is the inverse of 7 in Z_1yg-1)-
o The product n = pgq.

The public key does not include p, g, r, or (p — 1)(g — 1). Knowing any of these
numbers and the numbers in the public key would make it relatively easy to decrypt any
encrypted message.

We can now give the encryption and decryption algorithms. The sender wishes
to send a message to the receiver. We will assume the message is simply a number
between 2 and n — 1. To send a text message, the sender would use a standard way of
representing the text as a number, such as the ASCII code. A long text would be broken
up into smaller texts so that each would be coded as a number in the allowable range
2 to n — 1 and each would be sent separately. Let 2 < m < n — 1 be the message to be
sent.

Using the public key, the sender encrypts the message as anumber0 <y <n — 1 tobe
sent to the receiver where R

y = m’ (mod n).
That is, the sender computes y to be the remainder when m* is divided by » and sends y
to the receiver.

Using the private key, the receiver decrypts y, the message received from the sender, by
computing
¥y (mod n),
the remainder when y” is divided by n. Since rs = 1 (mod(p — 1)(g — 1)), Theorem 25.1
says,
y = (m*)" = m” = m (mod n).
Thus the receiver reconstructs the original message m.

Of course, in practice the prime numbers p and g are very large. As of the writ-
ing of this book it is thought that prime numbers requiring 4096 bits or approximately
1200 digits are sufficient to make the RSA scheme secure. To illustrate how the process
works, we will use small primes.

Let p = 17 and g = 11. The private key consists of

* p=17,g=11,

® n=pq =187 and

® anumber r relatively prime to (p — 1)(g — 1) = 160. For this example we take
r=23.

The public key consists of

® n=187and

® 5 ="1. Alittle calculation shows that 23 - 7 = 161 = 160 + 1 = 1 (mod 160),
which implies that s = 7. Since the public key consists of only n and s,
(p — 1)(g — 1) is unknown to all but the receiver. Without knowing (p — 1)(g — 1),
the value of r cannot be determined from the value of s.

Suppose the sender wishes to send the message m = 2 to the the receiver. The
message is encrypted by computing

y =27 = 128 (mod 187).
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The receiver recovers the original message by computing
128% = 2 (mod 187). A

In Example 25.2 some of the computations would be long and tedious without the use
of a computer. For large primes p and g, it is essential to have an efficient algorithm
to compute m* (mod n) and y” (mod #n). This can be accomplished by using base 2. We
illustrate with the following example.

In Example 25.2 we needed to compute 1287 (mod 187). We can compute this value
by expressing 23 in base 2, 23 = 16 + 4 + 2 + 1, and then computing the following:

128' =128

1282 = 1638 = 115 (mod 187)

128* = (1282)? = 115% = 135 (mnod 187)
128% = (128*)? = 135? = 86 (mod 187)
128'6 = (128%)? = 86 = 103 (mod 187),

Thus

12823 =128 16+4+2+1

= (128'9128*)(1282128")

= (103 - 135)(115 - 128)

=67-134

= 2 (mod 187). A

As illustrated in the above example, this method gives a more efficient computation
of a* (mod n).

The Euclidean algorithm is a simple and efficient way to compute the inverse of a
unit in Z_1y4—1). It involves the repeated use of the division algorithm. However, we
will not discuss the Euclidean algorithm here.

The reader may have noticed a potential flaw in the RSA encryption scheme. It is
possible that m is a multiple of either p or g. In that case, m®~ Y@~ =£ 1 (mod n), which
means that m™ may not be equivalent to m modulo . In this case RSA encryption fails.
However, when using large prime numbers the probability that the message is a multiple
of p or q is extremely low. If one is concerned about this issue, the algorithm could be
modified slightly to be sure that the message is smaller than both p and g.

How are the large prime numbers p and g in RSA encryption found? Basically,
the process is to guess a value and check that it is prime. Unfortunately, there is no
known fast method to test for primality, but it is possible to do a fast probabilistic test.
One simple probabilistic test uses Fermat’s Theorem (Theorem 24.1). The idea is to
generate a random positive integer less than p and check if a?~! = 1 (mod p). If p is
prime, then aP~! = 1 (mod p), so if a?~! # 1 (mod p), then p is not a prime number
and the number p is rejected. On the other hand, if @' = 1 (mod p), then p passes the
test and p could be a prime. If p passes the test, we repeat the process for a different
random value of a. The probability that a composite number p is picked given that p
passes the test several times is low enough to safely assume that p is prime.
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m EXERCISES 25

In Exercises 1 through 8, the notation is consistent with the notation used in the text for RSA encryption. It may
be helpful to use a calculator or computer.

1. Let p = 3 and g = 5. Find n, and all possible pairs (r, s).
2. Let p = 3 and g = 7. Find n and all possible pairs (7, s).
3. Let p = 3 and ¢ = 11. Find n and all possible pairs (7, s).
4. Let p = 5 and g = 7. Find n and all possible pairs (r, s).
5. Letp = 13,9 = 17, and r = 5. Find the value of s.
6. For RSA encryption it is assumed that the message m is at least 2. Why should m not be 1?
7. The public key is n = 143 and s = 37.
a. Compute the value of y if the message is m = 25.
b. Find r. (Computer Algebra Systems have built-in functions to compute in Z,,.)
c. Use your answers to parts a) and b) to decrypt y.
8. The public key is n = 1457 and s = 239.
a. Compute the value of y if the message is m = 999.
b. Find r. (Computer Algebra Systems have built-in functions to compute in Z,,.)
c. Use your answers to parts a) and b) to decrypt y.
9. For p = 257, ¢ = 359, and r = 1493 identify the private and public keys.
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THE FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN

Let L be a field and D a subring of L that contains the unity. The ring D is an integral
domain since it has no zero divisors. Also F, the set of all quotients of the form % with
a and b # 0 both in D, forms a subfield of L. The field F is called a field of quotients of
the integral domain D.

LetL = R.IfD = Z, then
F=[%|a,beZ,b;é0]=Q

which is a field.
If D = {x +yv/2|x,y € Z}, then

x+yv2
74+ w2

By rationalizing the denominator we see that
F= {r+s~/§|r,s € Q}
which is a field by Exercise 12 in Section 22. A

F={§|a,beD,b#0}=[ x,y,z,weZ,z+wﬁ¢0}'

In this section, we start with an integral domain D and construct a field F. We then
show that D is isomorphic with a subring D’ of F and that F consists of all quotients 3
with a,b € D/, b # 0. Thus we can think of any integral domain as being a subring of a
field and every element of the field is the quotient of elements from the integral domain.

The Construction

Let D be an integral domain that we desire to enlarge to a field of quotients F. A coarse
outline of the steps we take is as follows:

1. Define what the elements of F are to be.
2. Define the binary operations of addition and multiplication on F.

211



212

Part VI

26.2 Definition

26.3 Lemma

Proof

Constructing Rings and Fields

3. Check all the field axioms to show that F is a field under these operations.
4. Show that F can be viewed as containing D as an integral subdomain.

Steps 1, 2, and 4 are very interesting, and Step 3 is largely a mechanical chore. We
proceed with the construction.

Step 1 Let D be a given integral domain, and form the Cartesian product
D x D ={(a,b)|a,b € D}

We are going to think of an ordered pair (a, b) as representing a formal quotient a/b,
that is, if D = Z, the pair (2, 3) will eventually represent the number % for us. The pair
(2, 0) represents no element of QQ and suggests that we cut the set D x D down a bit.
Let S be the subset of D x D given by

S={(a,b)|a,beD,b+#0}.

Now S is still not going to be our field as is indicated by the fact that, with D = Z,
different pairs of integers such as (2, 3) and (4, 6) can represent the same rational
number. We next define when two elements of S will eventually represent the same
element of F, or, as we shall say, when two elements of S are equivalent.

Two elements (a, b) and (c, d) in S are equivalent, denoted by (a, b) ~ (c, d), if and only
if ad = be. u

Observe that this definition is reasonable, since the criterion for (a, b) ~ (c, d) is an
equation ad = bc involving elements in D and concerning the known multiplication in
D. Note also that for D = Z, the criterion gives us our usual definition of equality of §
with £, for example, % = % since (2)(6) = (3)(4). The rational number that we usually
denote by % can be thought of as the collection of all quotients of integers that reduce
to, or are equivalent to, %

The relation ~ between elements of the set S as just described is an equivalence relation.

‘We must check the three properties of an equivalence relation.

Reflexive (a, b) ~ (a, b) since ab = ba, for multiplication in D is commutative.
Symmetric If (a, b) ~ (c, d), then ad = bc. Since multiplication in D is commuta-
tive, we deduce that cb = da, and consequently (c,d) ~ (a, b).

Transitive If (a,b) ~ (c,d) and (c,d) ~ (r,s), then ad = bc and cs = dr. Using
these relations and the fact that multiplication in D is commutative, we have

asd = sad = sbc = bcs = bdr = brd.

Now d # 0, and D is an integral domain, so cancellation is valid; this is a cru-
cial step in the argument. Hence from asd = brd we obtain as = br, so that
@b) ~ (r,9). *

‘We now know, in view of Theorem 0.22, that ~ gives a partition of S into equiva-
lence classes. To avoid long bars over extended expressions, we shall let [(a, b)], rather
than (a, b), be the equivalence class of (a,b) in S under the relation ~. We now finish
Step 1 by defining F to be the set of all equivalence classes [(a, b)] for (a,b) € S.

Step 2 The next lemma serves to define addition and multiplication in F.
Observe that if D = Z and [(a, b)] is viewed as (a/b) € Q, these definitions applied to
Q give the usual operations.
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For [(a, b)] and [(c, d)] in F, the equations
[(a, )] + [(c, d)] = [(ad + bc, bd)]

and

[(a, D)]I(c, )] = [(ac, bd)]

give well-defined operations of addition and multiplication on F.

Observe first that if [(a, b)] and [(c, d)] are in F, then (a, b) and (c,d) are in S, so b # 0
and d # 0. Because D is an integral domain, bd # 0, so both (ad + bc, bd) and (ac, bd)
are in S. (Note the crucial use here of the fact that D has no divisors of 0.) This shows
that the right-hand sides of the defining equations are at least in F.

It remains for us to show that these operations of addition and multiplication are
well defined. That is, they were defined by means of representatives in S of elements of
F, so we must show that if different representatives in S are chosen, the same element
of F will result. To this end, suppose that (a1, b;) € [(a, )] and (¢, d)) € [(c,d)]. We
must show that

(a1dy + bic1, b1dy) € [(ad + bc, bd)]

and
(aic1, bidy) € [(ac, bd)].

Now (a,,b) € [(a, b)] means that (a;, by) ~ (a, b); that is,

a1b = bla.
Similarly, (c1,d)) € [(c,d)] implies that
Cld = dlc.

To get a “common denominator” (common second member) for the four pairs (a, b),
(a1, b1), (c,d), and (c1, d1), we multiply the first equation by d;d and the second equation
by b1b. Adding the resulting equations, we obtain the following equation in D:

abdd + c,db\b = byad,d + dicb,b.
Using various axioms for an integral domain, we see that
(a1d, + byc1)bd = bydy(ad + bc),
so
(ardy + bic1, b1dy) ~ (ad + be, bd),

giving (a1d; + bic1, b1dy) € [(ad + bc, bd)]. This takes care of addition in F. For mul-
tiplication in F, on multiplying the equations a,b = bja and ¢,d = dc, we obtain

aybcid = byad;c,
50, using axioms of D, we get
ajc1bd = bydyac,
which implies that
(aic1, bidy) ~ (ac, bd).
Thus (ajc1, bidy) € [(ac, bd)], which completes the proof. *

It is important to understand the meaning of the last lemma and the necessity for
proving it. This completes our Step 2.
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Step 3 Step 3 is routine, but it is good for us to work through a few of these
details. The reason for this is that we cannot work through them unless we understand
what we have done. Thus working through them will contribute to our understanding
of this construction. We list the things that must be proved and prove a couple of them.
The rest are left to the exercises.

1. Addition in F is commutative.

Now [(a, b)] + [(c, d)] is by definition [(ad + bc, bd)]. Also [(c,d)] + [(a, b)] is by defi-

nition [(ch + da, db)]. We need to show that (ad + bc, bd) ~ (cb + da, db). This is true,

since ad + bc = cb + da and bd = db, by the axioms of D. *
2. Addition is associative.

[(0, 1)] is an identity element for addition in F.

[(—a, b)] is an additive inverse for [(a, b)] in F.

Multiplication in F is associative.

Multiplication in F is commutative.
The distributive laws hold in F.
[(1, 1)] is a multiplicative identity element in F.

If [(a, b)] € F is not the additive identity element, then a # 0 in D and [(b, a)]
is a multiplicative inverse for [(a, b)].

N e w

© ®

Let [(a,b)] € F.If a = 0, then
al =b0=0,

s0
(a,b) ~ (0, 1),

that is, [(a, b)] = [(0, 1)]. But [(0, 1)] is the additive identity by Part 3. Thus if [(a, b)] is
not the additive identity in F, we have a # 0, so it makes sense to talk about [(b, a)] in
F. Now [(a, b)][(b, a)] = [(ab, ba)]. But in D we have ab = ba, so (ab)l = (ba)l, and

(ab,ba) ~ (1,1).
Thus
[(a, DB, a)] = [(1, D],
and [(1, 1)] is the multiplicative identity by Part 8. *
This completes Step 3.

Step 4 It remains for us to show that F can be regarded as containing D. To do
this, we show that there is an isomorphism i of D with a subdomain of F. Then if we
rename the image of D under i using the names of the elements of D, we will be done.
The next lemma gives us this isomorphism. We use the letter i for this isomorphism to
suggest injection; we will inject D into F.

The map i : D — F given by i(a) = [(a, 1)] is an isomorphism of D with a subring D’
of F.

For a and b in D, we have

i(a+b)=[(a+b,1)]
Also,
i(@) +i(b) = [(a, D] + [(b, D] = [(al + 1b, 1)] = [(a + b, 1)]
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so i(a + b) = i(a) + i(b). Furthermore,
i(ab) = [(ab, 1)],
while
i(@)i(b) = [(a, D][(B, D] = [(ab, )],
so i(ab) = i(a)i(b).
It remains for us to show only that i is one-to-one. If i(a) = i(b), then
[(a, D] = [(®, D],
so (a, 1) ~ (b, 1) giving al = 1b; that is,
a=hb.

Thus i is an isomorphism of D with i[D] = D', and, of course, IV is then a subdomain
of F. *

Since [(a, b)] = [(a, DI(1,b)] = [(a, 1)]/[(b, 1)] = i(a)/i(b) clearly holds in F, we
have now proved the following theorem.

Any integral domain D can be enlarged to (or embedded in) a field F such that every
element of F can be expressed as a quotient of two elements of D. (Such a field F is a
field of quotients of D.)

Uniqueness

The field F can be regarded as a minimal field containing D. This is intuitively evident,
since every field containing D must contain all elements a/b for every a,b € D with
b # 0. The next theorem will show that every field containing D contains a subfield that
is a field of quotients of D, and that any two fields of quotients of D are isomorphic.

Let F be a field of quotients of D and let L be any field containing D. Then there exists a
map  : F — L that gives an isomorphism of F with a subfield of L such that {(a) = a
fora € D.

The subring and mapping diagram in Fig. 26.8 may help you to visualize the situation
for this theorem.

An element of F is of the form a /r b where /r denotes the quotient of a € D by
b € D regarded as elements of F. We of course want to map a / b onto a /;, b where /.
denotes the quotient of elements in L. The main job will be to show that such a map is
well defined.

We must define  : F — L, and we start by defining

Y@ =a for aeD.

L
PR " |
Y’ﬁny
D

26.8 Figure



216

Part VI

26.9 Corollary

Proof

26.10 Corollary

Proof

Constructing Rings and Fields

Every x € F is a quotient a /r b of some two elements a and b,b # 0, of D. Let us
attempt to define ¥ by

¥(a /r b) =Y(a) /L Yy (B).
‘We must first show that this map  is sensible and well-defined. Since ¥ is the identity
on D, for b # 0 we have y¥(b) # 0, so our definition of ¥ (a /r b) as ¥(a) /. ¥ (b) makes
sense. If a /r b= ¢ /rdin F, then ad = bc in D, so Y (ad) = ¥ (bc). But since ¥ is the
identity on D,
Ylad)=y@yd) and  Y(bc) =y B)Y(O).

Thus
Y@ /L ¥(B) = ¥ (0) /L ¥(d)

in L, so ¢ is well-defined.
The equations
Y(xy) =¥y X)¥ ()

and

Yx+y)=y@+¥O)
follow easily from the definition of ¥ on F and from the fact that i is the identity on D.
If ¥(a /r b) = ¥(c [r d), we have
Y@ L v®) =¥ ©) LY@

SO

Y@y (d) = ¥ )Y (o).

Since ¥ is the identity on D, we then deduce that ad = bc, soa /r b = ¢ /r d. Thus ¢
is one-to-one.
By definition, {/(a) = a fora € D. *

Every field L containing an integral domain D contains a field of quotients of D.

In the proof of Theorem 26.7 every element of the subfield ¥ [F] of L is a quotient in L
of elements of D. *

Any two fields of quotients of an integral domain D are isomorphic.
Suppose in Theorem 26.7 that L is a field of quotients of D, so that every element x of

L can be expressed in the form a /. b for a,b € D. Then L is the field ¢[F] of the proof
of Theorem 26.7 and is thus isomorphic to F. *

m EXERCISES 26

Computations

1. Describe the field F of quotients of the integral subdomain

D={n+mi|n,meZ}

of C. “Describe” means give the elements of C that make up the field of quotients of D in C. (The elements of
D are the Gaussian integers.)

of R.

2. Describe (in the sense of Exercise 1) the field F of quotients of the integral subdomain D = {n +m~/3 | n,m € Z}
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Concepts

3.

5.

Correct the definition of the italicized term without reference to the text, if correction is needed, so that it is in
a form acceptable for publication.

A field of quotients of an integral domain D is a field F in which D can be embedded so that every nonzero
element of D is a unit in F.

Determine whether each of the following is true or false.

a. Qis a field of quotients of Z.
b. R is a field of quotients of Z.
¢. Ris a field of quotients of R.
d. Cis afield of quotients of R.
e. If D is a field, then any field of quotients of D is isomorphic to D.
f.

The fact that D has no divisors of O was used strongly several times in the construction of a field F of
quotients of the integral domain D.

g. Every element of an integral domain D is a unit in a field F of quotients of D.
h. Every nonzero element of an integral domain D is a unit in a field F of quotients of D.

i. A field of quotients F’ of a subdomain D’ of an integral domain D can be regarded as a subfield of some
field of quotients of D.

j- Every field of quotients of Z is isomorphic to Q.

Show by an example that a field F’ of quotients of a proper subdomain D’ of an integral domain D may also
be a field of quotients for D.

Theory

6.
7.
8.
9.
10.
11.
12.

13.

14.
15.

16.

17.

Prove Part 2 of Step 3. You may assume any preceding part of Step 3.
Prove Part 3 of Step 3. You may assume any preceding part of Step 3.
Prove Part 4 of Step 3. You may assume any preceding part of Step 3.
Prove Part 5 of Step 3. You may assume any preceding part of Step 3.
Prove Part 6 of Step 3. You may assume any preceding part of Step 3.
Prove Part 7 of Step 3. You may assume any preceding part of Step 3.

Let R be a nonzero commutative ring, and let 7 be a nonempty subset of R closed under multiplication and
containing neither O nor divisors of 0. Starting with R x T and otherwise exactly following the construction
in this section, we can show that the ring R can be enlarged to a partial ring of quotients Q(R, T). Think about
this for 15 minutes or so; look back over the construction and see why things still work. In particular, show
the following:

a. O(R, T) has unity even if R does not.
b. In Q(R, T), every nonzero element of T is a unit.

Prove from Exercise 12 that every nonzero commutative ring containing an element a that is not a divisor of
0 can be enlarged to a commutative ring with unity. Compare with Exercise 36 of Section 23.

With reference to Exercise 12, how many elements are there in the ring Q(Z4, {1,3})?

With reference to Exercise 12, describe the ring Q(Z, {2" | n € Z*}), by describing a subring of R to which it
is isomorphic.

With reference to Exercise 12, describe the ring Q(3Z, {6" | n € Z*}) by describing a subring of R to which it
is isomorphic.

With reference to Exercise 12, suppose we drop the condition that T have no divisors of zero and just require
that nonempty T not containing 0 be closed under multiplication. The attempt to enlarge R to a commutative
ring with unity in which every nonzero element of T is a unit must fail if 7 contains an element a that is a
divisor of 0, for a divisor of 0 cannot also be a unit. Try to discover where a construction parallel to that in the
text but starting with R x T first runs into trouble. In particular, for R = Zg and T = {1, 2, 4}, illustrate the
first difficulty encountered. [Hint: It is in Step 1.]
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RINGS OF POLYNOMIALS
Polynomials in an Indeterminate

We all have a pretty workable idea of what constitutes a polynomial in x with coefficients
in a ring R. We can guess how to add and multiply such polynomials and know what
is meant by the degree of a polynomial. We expect that the set R[x] of all polynomials
with coefficients in the ring R is itself a ring with the usual operations of polynomial
addition and multiplication, and that R is a subring of R[x]. However, we will be working
with polynomials from a slightly different viewpoint than the approach in high school
algebra or calculus, and there are a few things that we want to say.

In the first place, we will call x an indeterminate rather than a variable. Suppose,
for example that our ring of coefficients is Z. One of the polynomials in the ring Z[x]
is 1x, which we shall write simply as x. Now x is not 1 or 2 or any of the other elements
of Z[x]. Thus from now on we will never write such things as “x = 1” or “x = 2,” as
we have done in other courses. We call x an indeterminate rather than a variable to
emphasize this change. Also, we will never write an expression such as “x> —4 = 0,”
simply because x> — 4 is not the zero polynomial in our ring Z[x]. We are accustomed
to speaking of “solving a polynomial equation,” and will be spending a lot of time in
the remainder of our text discussing this, but we will always refer to it as “finding a
zero of a polynomial.” In summary, we try to be careful in our discussion of algebraic
structures not to say in one context that things are equal and in another context that they
are not equal.

If a person knows nothing about polynomials, it is not an easy task to describe
precisely the nature of a polynomial in x with coefficients in a ring R. If we just define
such a polynomial to be a finite formal sum

n
Y ax'=ao+aix+- - +ax",
i=0

m HISTORICAL NOTE

he use of x and other letters near the end of

to reject as absolutely false everything of which

the alphabet to represent an “indeterminate”
is due to René Descartes (1596-1650). Earlier,
Frangois Viete (1540-1603) had used vowels for
indeterminates and consonants for known quan-
tities. Descartes is also responsible for the first
publication of the factor theorem (Corollary 28.4)
in his work The Geometry, which appeared as
an appendix to his Discourse on Method (1637).
This work also contained the first publication of
the basic concepts of analytic geometry; Descartes
showed how geometric curves can be described al-
gebraically.

Descartes was born to a wealthy family in
La Haye, France; since he was always of deli-
cate health, he formed the habit of spending his
mornings in bed. It was at these times that he ac-
complished his most productive work. The Dis-
course on Method was Descartes’ attempt to show
the proper procedures for “searching for truth in
the sciences.” The first step in this process was

he had the least doubt; but, since it was neces-
sary that he who was thinking was “something,”
he conceived his first principle of philosophy:
“I think, therefore I am.” The most enlightening
parts of the Discourse on Method, however, are
the three appendices: The Optics, The Geometry,
and The Meteorology. It was here that Descartes
provided examples of how he actually applied his
method. Among the important ideas Descartes dis-
covered and published in these works were the sine
law of refraction of light, the basics of the theory of
equations, and a geometric explanation of the rain-
bow.

In 1649, Descartes was invited by Queen
Christina of Sweden to come to Stockholm to tutor
her. Unfortunately, the Queen required him, cont-
rary to his long-established habits, to rise at an
early hour. He soon contracted a lung disease and
died in 1650.
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where a; € R, we get ourselves into a bit of trouble. For surely 0 + a;x and 0 + a;x +
0x? are different as formal sums, but we want to regard them as the same polynomial. A
practical solution to this problem is to define a polynomial as an infinite formal sum

o0

Y axi=aptax+-tax"+ooo,

i=0
where a; = 0 for all but a finite number of values of i. Now there is no problem of
having more than one finite formal sum represent what we wish to consider a single
polynomial.

Let R be a ring. A polynomial f(x) with coefficients in R is an infinite formal sum

o]
Y axi=aptax+-tax"+ooo,
i=0
where a; € R and for all but a finite number of values of i, a; = 0. The a; are coefficients
of f(x). If for some i > 0 it is true that a; # 0, the largest such value of i is the degree
of f(x). If all a; = 0, then the degree of f(x) is undefined. ]

To simplify working with polynomials, let us agree that if f(x) = ap + ayx + - - - +
apx" + - -+ has a; =0 for i > n, then we may denote f(x) by ap + ajx+ - - - + a,x".
Also, if R has unity 1 # 0, we will write a term 1x* in such a sum as x*. For example,
in Z[x], we will write the polynomial 2 + 1x as 2 + x. Finally, we shall agree that we
may omit altogether from the formal sum any term Ox’, or ag if ap = 0 but not all a; = 0.
Thus 0, 2, x, and 2 + x? are polynomials with coefficients in Z. An element of R is a
constant polynomial.

Addition and multiplication of polynomials with coefficients in a ring R are defined
in a way familiar to us. If

f=a+ax+---+ax"+---

and
g)=bo+bx+ - 4+bx"+---,

then for polynomial addition, we have
f+gx)=co+cix+ - +cux"+ - - where ¢, = an + by,

and for polynomial multiplication, we have
n
f)gx) =do+dix+---+dux" +--- whered, = Zi:O aibn—i

Observe that both ¢; and d; are O for all but a finite number of values of i, so these
definitions make sense. Note that Y ¢ a;b,_; need not equal Y ;_ bia,—; if R is not
commutative. With these definitions of addition and multiplication, we have the follow-
ing theorem.

The set R[x] of all polynomials in an indeterminate x with coefficients in a ring R is a
ring under polynomial addition and multiplication. If R is commutative, then so is R[x],
and if R has unity 1 # 0, then 1 is also unity for R[x].

That (R[x], +) is an abelian group is apparent. The associative law for multiplication
and the distributive laws are straightforward, but slightly cumbersome, computations.
We illustrate by proving the associative law.

¥ The degree of the zero polynomial is sometimes defined to be — 1, which is the first integer less than 0, or
defined to be —oo so that the degree of f(x)g(x) will be the sum of the degrees of f(x) and g(x) if one of them
is zero.
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Applying ring axioms to a;, bj, ¢ € R, we obtain

() (o) (Z o) =[5 (o)1)

"_[i(z,,b" Yoo

n=0

( Z a,-bjck)x‘

i+j+k=s

S )

m=0

(S (S}l

e 'll\”’lx 10

@
Il
o

m=0

(S [(Se) (5]

Whew! In this computation, the fourth expression, having just two summation
signs, should be viewed as the value of the triple product f(x)g(x)h(x) of these poly-
nomials under this associative multiplication. (In a similar fashion, we view f(g(h(x)))
as the value of the associative composition (f o g o h)(x) of three functions f, g, and h.)

The distributive laws are similarly proved. (See Exercise 26.)

The comments prior to the statement of the theorem show that R[x] is a commuta-
tive ring if R is commutative, and a unity 1 7 0 in R is also unity for R[x], in view of
the definition of multiplication in R[x]. *

Thus Z[x] is the ring of polynomials in the indeterminate x with integral coeffi-
cients, Q[x] the ring of polynomials in x with rational coefficients, and so on.

In Z;[x], we have
G+ =0+ Da+ D=2 +1+Dx+1=2+1
Still working in Z,[x], we obtain
C+HD+E+D)=0+Dx+(1+1)=0+0=0. A

If Ris aring and x and y are two indeterminates, then we can form the ring (R[x])[y],
that is, the ring of polynomials in y with coefficients that are polynomials in x. Every
polynomial in y with coefficients that are polynomials in x can be rewritten in a natu-
ral way as a polynomial in x with coefficients that are polynomials in y as illustrated
by Exercise 20. This indicates that (R[x])[y] is naturally isomorphic to (R[y])[x], al-
though a careful proof is tedious. We shall identify these rings by means of this natural
isomorphism, and shall consider this ring R[x, y] the ring of polynomials in two inde-
terminates x and y with coefficients in R. The ring R[x), - - - ,x,] of polynomials in
the n indeterminates x; with coefficients in R is similarly defined.

We leave as Exercise 24 the proof that if D is an integral domain, then so is D[x]. In
particular, if F is a field, then F[x] is an integral domain. Note that F[x] is not a field, for
x is not a unit in F[x]. That is, there is no polynomial f(x) € F[x] such that xf(x) = 1.
By Theorem 26.6, one can construct the field of quotients F(x) of F[x]. Any element
in F(x) can be represented as a quotient f(x)/g(x) of two polynomials in F[x] with
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g(x) # 0. We similarly define F(xy, - - - , x,) to be the field of quotients of F[xy, - - - ,x,].
This field F(xy,- - - ,x,) is the field of rational functions in » indeterminates over F.
These fields play a very important role in algebraic geometry.

The Evaluation Homomorphisms

We are now ready to proceed to show how homomorphisms can be used to study what
we have always referred to as “solving a polynomial equation.” Let E and F be fields,
with F a subfield of E, that is, F < E. The next theorem asserts the existence of very im-
portant homomorphisms of F[x] into E. These homomorphisms will be the fundamental
tools for much of the rest of our work.

(The Evaluation Homomorphisms for Field Theory) Let F be a subfield of a field
E, let o be any element of E, and let x be an indeterminate. The map ¢, : F[x] — E
defined by

(@ +arx+ - +ax") =ap+aa +- - +a,a"

for (ap + a1x + - - - + apx") € F[x] is a homomorphism of F[x] into E. Also, ¢, (x) = «,
and ¢, maps F isomorphically by the identity map; that is, ¢y(a) = a for a € F. The
homomorphism ¢, is evaluation at «.

The subfield and mapping diagram in Fig. 27.5 may help us to visualize this situation.
The dashed lines indicate an element of the set. The theorem is really an immediate
consequence of our definitions of addition and multiplication in F[x]. The map ¢, is
well defined, that is, independent of our representation of f(x) € F[x] as a finite sum

a+ax+---+apx",

since such a finite sum representing f(x) can be changed only by insertion or deletion of
terms Ox’, which does not affect the value of @, (f(x)).

ffx)y=ap+aix+---+ax",gx) =by+bi1x+--- + bx™, and h(x) = f(x) +
gx)=co+cix+---+cx, then

o (f(x) + 8(x)) = Pu(h(x)) = o+ Crt + -+ - + ¢,
while
a(f(X) + du(g(®) = (a0 + @10 + - - - + ana”™) + (bo + b1t + - - - + bp™).
Since by definition of polynomial addition we have ¢; = a; + b;, we see that

Ga(f(x) + 8(0)) = P (F(X)) + du(g(x)).

E
P
Al ————% > $,IFlx]]
TS x L NE))
Identity map r
\‘a \a=¢a(a)

27.5 Figure
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Turning to multiplication, we see that if
fgx) =do+dix+---+dx,
then
¢a(f(X)g(x)) = do +dyo +--- + dso’,
while
[P (FONDe(gGN] = (a0 + @rex + - - - + ctme”) (bo + 1ot + - - - + bmr™).
Since by definition of polynomial multiplication d; = Z:,;O a;b;_;, we see that
P (f()8()) = [$a(fON][Pa(8(X))]-

Thus ¢, is a homomorphism.

The very definition of ¢, applied to a constant polynomial a € F[x], where a € F,
gives ¢, (a) = a, so ¢, maps F isomorphically by the identity map. Again by definition
of ¢, we have ¢, (x) = ¢p(1x) = la = a. *

We point out that this theorem is valid with the identical proof if F and E are
merely commutative rings with unity rather than fields. However, we shall be interested
primarily in the case in which they are fields.

It is hard to overemphasize the importance of this simple theorem for us. It is the
very foundation for all of our further work in field theory. It is so simple that it could jus-
tifiably be called an observation rather than a theorem. It was perhaps a little misleading
to write out the proof because the polynomial notation makes it look so complicated that
you may be fooled into thinking it is a difficult theorem.

Let F be Q and E be R in Theorem 27.4, and consider the evaluation homomorphism
o : Q[x] — R. Here

do(ao+ax+ -+ +anx") = ag+ a0+ - - + a,0" = ao.
Thus every polynomial is mapped onto its constant term. A

Let F be Q and E be R in Theorem 27.4 and consider the evaluation homomorphism
¢ : Q[x] » R. Here

$rao+ax+ - +a") =ap+a2+---+a2".
Note that
(0 +x—6)=224+2-6=0.
Thus x? 4+ x — 6 is in the kernel N of ¢,. Of course,
P +x—6=(x—2)(x+3),
and the reason that ¢,(x> + x — 6) = Qs that ¢p(x —2) =2 —2=0. A

Let F be Q and E be C in Theorem 27.4 and consider the evaluation homomorphism
¢i : Q[x] > C. Here

di(ao+arx+---+ax") =ap+aii+ - + ayi"
and ¢;(x) = i. Note that
(P +1)=2+1=0,
s0 x2 + 1 is in the kernel N of ¢;. A
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Let F be Q and let E be R in Theorem 27.4 and consider the evaluation homomorphism
¢ : Q[x] > R. Here

dxlao+aix+---+ax")=ap+ayw + -+ +a,n".

It can be proved that ag + ay7 + - - - + a,n" = Oifand only ifa; = O0fori = 0,1,--- ,n.
Thus the kernel of ¢, is {0}, and ¢, is a one-to-one map. This shows that all formal
polynomials in 7w with rational coefficients form a ring isomorphic to Q[x] in a natural
way with ¢, (x) = &. A

The New Approach

We now complete the connection between our new ideas and the classical concept of
solving a polynomial equation. Rather than speak of solving a polynomial equation, we
shall refer to finding a zero of a polynomial.

Let F be a subfield of a field E, and let o be an element of E. Let f(x) = ap +
ai1x + - -+ + a,x" be in F[x], and let ¢, : F[x] — E be the evaluation homomorphism of
Theorem 27.4. Let () denote

Ga(f(X) =ap+ ar + - - - + aa”.
If f(e) = O, then « is a zero of f(x). .

In terms of this definition, we can rephrase the classical problem of finding all real
numbers r such that r> + r — 6 = 0 by letting F = Q and E = R and finding all @ € R
such that

$a(¥* +x—6)=0,
that is, finding all zeros of * + x — 6 in R. Both problems have the same answer, since
(@eR|g(P+x—6)=0)={reR|FP+r—6=0)}={2,-3}.

It may seem that we have merely succeeded in making a simple problem seem
quite complicated. In fact, what we have done is to phrase the problem in the language
of mappings, and we can now use all the mapping machinery that we have developed
and will continue to develop for its solution.

Our Basic Goal

We continue to attempt to put our future work in perspective. Sections 30 and 31 are
concerned with topics in ring theory that are analogous to the material on factor groups
and homomorphisms for group theory. However, our aim in developing these analogous
concepts for rings will be quite different from our aims in group theory. In group the-
ory we used the concepts of factor groups and homomorphisms to study the structure
of a given group and to determine the types of group structures of certain orders that
could exist. We will be talking about homomorphisms and factor rings in Section 30
with an eye to finding zeros of polynomials, which is one of the oldest and most funda-
mental problems in algebra. Let us take a moment to talk about this aim in the light of
mathematical history, using the language of “solving polynomial equations” to which
we are accustomed.

We start with the Pythagorean school of mathematics of about 525 B.C. The
Pythagoreans worked with the assumption that all distances are commensurable; that
is, given distances a and b, there should exist a unit of distance u and integers n and m
such that @ = (n)(u) and b = (m)(u). In terms of numbers, then, thinking of u as being
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one unit of distance, they maintained that all numbers are integers. This idea of com-
mensurability can be rephrased according to our ideas as an assertion that all numbers
are rational, for if @ and b are rational numbers, then each is an integral multiple of the
reciprocal of the least common multiple of their denominators. For example, if a = %
and b = 12, then a = (35)(g) and b = (76)().

The Pythagoreans knew, of course, what is now called the Pythagorean theorem;
that is, for a right triangle with legs of lengths a and b and a hypotenuse of length c,

&+ =
They also had to grant the existence of a hypotenuse of a right triangle having two
legs of equal length, say one unit each. The hypotenuse of such a right triangle would,
as we know, have to have a length of V2. Imagine then their consternation and dis-
may when one of their society—according to some stories it was Pythagoras himself—

came up with the embarrassing fact that is stated in our terminology in the following
theorem.

The polynomial x> — 2 has no zeros in the rational numbers. Thus +/2 is not a rational
number.

Suppose that m/n for m,n € Z is a rational number such that (m/n)?> = 2. We assume
that we have canceled any factors common to m and n, so that the fraction m/n is in
lowest terms with gcd(m, n) = 1. Then

m? = 2n?,

where both m? and 2n? are integers. Since m? and 2n? are the same integer, and since
2 is a factor of 2n2, we see that 2 must be one of the factors of m?. But as a square,
m? has as factors the factors of m repeated twice. Thus m? must have two factors 2.
Then 2n* must have two factors 2, so n2 must have 2 as a factor, and consequently » has
2 as a factor. We have deduced from m? = 2n? that both m and n must be divisible by 2,
contradicting the fact that the fraction m/n is in lowest terms. Thus we have 2 # (m/n)?
for any m,n € Z. *

m HISTORICAL NOTE

he solution of polynomial equations has

been a goal of mathematics for nearly 4000
years. The Babylonians developed versions of the
quadratic formula to solve quadratic equations.
For example, to solve x% — x = 870, the Baby-
lonian scribe instructed his students to take half
of 1 (%), square it (}t), and add that to 870.
The square root of 870L, namely 29%, is then
added to % to give 30 as the answer. What the
scribes did not discuss, however, was what to do
if the square root in this process was not a ra-
tional number. Chinese mathematicians, however,
from about 200 B.C., discovered a method simi-
lar to what is now called Horner’s method to solve
quadratic equations numerically; since they used
a decimal system, they were able in principle to

carry out the computation to as many places as
necessary and could therefore ignore the distinc-
tion between rational and irrational solutions. The
Chinese, in fact, extended their numerical tech-
niques to polynomial equations of higher degree.
In the Arab world, the Persian poet-mathematician
Omar Khayyam (1048-1131) developed methods
for solving cubic equations geometrically by find-
ing the point(s) of intersection of appropriately
chosen conic sections, while Sharaf al-Din al-Tusi
(died 1213) used, in effect, techniques of calcu-
lus to determine whether or not a cubic equa-
tion had a real positive root. It was the Italian
Girolamo Cardano (1501-1576) who first pub-
lished a procedure for solving cubic equations
algebraically.
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Thus the Pythagoreans ran right into the question of a solution of a polynomial
equation, x> — 2 = 0. We refer the student to Shanks [36, Chapter 3], for a lively and
totally delightful account of this Pythagorean dilemma and its significance in mathe-
matics.

In our motivation of the definition of a group, we commented on the necessity of
having negative numbers, so that equations such as x + 2 = 0 might have solutions.
The introduction of negative numbers caused a certain amount of consternation in some
philosophical circles. We can visualize 1 apple, 2 apples, and even % apples, but how
can we point to anything and say that it is —17 apples? Finally, consideration of the
equation x> + 1 =0 led to the introduction of the number i. The very name of an
“imaginary number” given to i shows how this number was regarded. Even today, many
students are led by this name to regard i with some degree of suspicion. The negative
numbers were introduced to us at such an early stage in our mathematical development
that we accepted them without question.

We first met polynomials in high school freshman algebra. The first problem there
was to learn how to add, multiply, and factor polynomials. Then, in both freshman
algebra and in the second course in algebra in high school, considerable emphasis was
placed on solving polynomial equations. These topics are exactly those with which we
shall be concerned. The difference is that while in high school, only polynomials with
real number coefficients were considered, we shall be doing our work for polynomials
with coefficients from any field.

Once we have developed the machinery of homomorphisms and factor rings in
Section 30, we will proceed with our basic goal: to show that given any polynomial of
degree > 1, where the coefficients of the polynomial may be from any field, we can find
a zero of this polynomial in some field containing the given ficld. After the machinery
is developed in Sections 30 and 31, the achievement of this goal will be very easy, and
is really a very elegant piece of mathematics.

All this fuss may seem ridiculous, but just think back in history. This is the culmi-
nation of more than 2000 years of mathematical endeavor in working with polynomial
equations. After achieving our basic goal, we shall spend the rest of our time studying
the nature of these solutions of polynomial equations. We need have no fear in approach-
ing this material. We shall be dealing with familiar topics of high school algebra. This
work should seem much more natural than group theory.

In conclusion, we remark that the machinery of factor rings and ring homomor-
phisms is not really necessary in order for us to achieve our basic goal. For a direct
demonstration, see Artin [27, p. 29]. However, factor rings and ring homomorphisms
are fundamental ideas that we should grasp, and our basic goal will follow very easily
once we have mastered them.

m EXERCISES 27

Computations

In Exercises 1 through 4, find the sum and the product of the given polynomials in the given polynomial ring.
1. f(x) = 4x — 5,g(x) = 2x% — 4x + 2 in Zg[x].
2. f(x)=x+1,g(x) =x+ 1in Zy[x].
3. f(x) = 2x% + 3x + 4, g(x) = 3x% + 2x + 3 in Zg[x].
4, f(x) =203 + 402 + 3x + 2,8(x) = 3x* + 2x + 4 in Zs[x].
5. How many polynomials are there of degree < 3 in Z,[x]? (Include 0.)

6. How many polynomials are there of degree < 2 in Zs[x]? (Include 0.)
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In Exercises 7 and 8, F = E = C in Theorem 27.4. Compute for the indicated evaluation homomorphism.

7. $2(x* +3) 8. ¢i(2X° — 2 +3x+2)
In Exercises 9 through 11, F = E = Z7 in Theorem 27.4. Compute for the indicated evaluation homomorphism.

9. ¢3[(x* + 2003 — 3x2 4 3)] 10. ¢s[(x> +2)@x® + 3)(x7 + 322 + 1]
11. 4&4(3):106 +5x% 4+ 2x°%) [Hint: Use Fermat’s theorem.]
In Exercises 12 through 15, find all zeros in the indicated finite field of the given polynomial with coefficients in
that field. [Hint: One way is simply to try all candidates!]
12. X2 +1inZ, 13. > +2x+2in Z7
14. 35 + 323 + 52 + 2xin Zs
15. f(x)g(x) where f(x) = x> + 222 + 5 and g(x) = 3x% 4+ 2x in Z
16. Let ¢, : Zs[x] — Zs be an evaluation homomorphism as in Theorem 27.4. Use Fermat’s theorem to evaluate

G302 + 3117 — 2% 1),
17. Use Fermat’s theorem to find all zeros in Zs of 2x219 4 3x7* + 2557 4 3x*.

Concepts

In Exercises 18 and 19, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

18. A polynomial with coefficients in a ring R is an infinite formal sum

(o)
Ea;xi=ao+a1x+a2x2+~-+a,,x"+---
i=0

where a; € Rfori =0,1,2,--- .

19. Let F be a field and let f(x) € F[x]. A zero of f(x) is an a € F such that ¢, (f(x)) = 0, where ¢ : F(x) —> Fis
the evaluation homomorphism mapping x into c.

20. Consider the element
fry) =G + 20y + (2 — 6x + DY? + (* — 20y + (x* — 3x* +2)
of (Q[xD[y]. Write f(x, y) as it would appear if viewed as an element of (Q[y])[x].
21. Consider the evaluation homomorphism ¢s : Q[x] - R. Find six elements in the kernel of the
homomorphism ¢s.
22, Find a polynomial of degree >0 in Z4[x] that is a unit.
23. Determine whether each of the following is true or false.
a. The polynomial (a,x" + - - - + a;x + ap) € R[x]isOif and only ifa; =0, fori =0, 1,--- ,n.
b. If R is a commutative ring, then R[x] is commutative.
¢. If D is an integral domain, then D[x] is an integral domain.
d. If R is a ring containing divisors of 0, then R[x] has divisors of 0.
e. If R is a ring and f(x) and g(x) in R[x] are of degrees 3 and 4, respectively, then f(x)g(x) may be of

degree 8 in R[x].

f. If R is any ring and f(x) and g(x) in R[x] are of degrees 3 and 4, respectively, then f(x)g(x) is always
of degree 7.

g. If F is a subfield of E and « € E is a zero of f(x) € F[x], then « is a zero of h(x) = f(x)g(x) for all
8(x) € Flx].

h. If F is a field, then the units in F[x] are precisely the units in F.
i. If R is a ring with unity, then x is never a divisor of 0 in R[x].
j- If R is aring, then the zero divisors in R[x] are precisely the zero divisors in R.
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Theory

24.
25.

27.

29.

31.

32.

Prove that if D is an integral domain, then D[x] is an integral domain.

Let D be an integral domain and x an indeterminate.

a. Describe the units in D[x].

b. Find the units in Z[x].

¢. Find the units in Z7[x].

Prove the left distributive law for R[x], where R is a ring and x is an indeterminate.

Let F be a field of characteristic zero and let D be the formal polynomial differentiation map, so that

D(ao+a1x+a2x2+-~+a,.x”) =ay+2-ax+---+n-ax L

a. Show that D : F[x] — F[x] is a group homomorphism of (F[x], +) into itself. Is D a ring homomorphism?
b. Find the kernel of D.

¢. Find the image of F[x] under D.

Let F be a subfield of a field E.

a. Define an evaluation homomorphism
Doy Flxr, - s x0] > E for «; €E,
stating the analog of Theorem 27.4.
b. With E = F = Q, compute ¢_3 2(x;%x2> + 3x1%x2).

¢. Define the concept of a zero of a polynomial f(xy,--- ,x,) € F[x1,--- ,x,] in a way analogous to the
definition in the text of a zero of f(x).

Let R be aring, and let RR be the set of all functions mapping R into R. For ¢, ¢ € R¥, define the sum ¢ +
by
@ +¥)r) =)+ ¥(r)
and the product ¢ - ¥ by
@ -¥)(r) = (Y ()
for r € R. Note that - is not function composition. Show that (R, +, -) is a ring.
Referring to Exercise 29, let F be a field. An element ¢ of FF is a polynomial function on F, if there exists
f(x) € F[x] such that ¢(a) = f(a) foralla € F.
a. Show that the set P of all polynomial functions on F forms a subring of FF.
b. Show that the ring Pr is not necessarily isomorphic to F[x]. [Hint: Show that if F is a finite field, Pr and
F[x] don’t even have the same number of elements.]
Refer to Exercises 29 and 30 for the following questions.

a. How many elements are there in Z,%2? in Z3%3?

b. Classify (Z,%2, +) and (Z3%3, +) by Theorem 9.12, the Fundamental Theorem of finitely generated abelian
groups.

¢. Show that if F is a finite field, then F¥ = Pg. [Hint: Of course, P C FF.Let F have as elements ay, - - - , ay,.
Note that if

fix) =c(x—a1)---(x — ai-1)(x — ait1) - - - (x — an),

then f;(aj) = O for j # i, and the value f;(a;) can be controlled by the choice of ¢ € F. Use this to show that
every function on F is a polynomial function.]

Let ¢ : Rj — R be a ring homomorphism. Show that there is a unique ring homomorphism ¥ : R;[x] —
R;[x] such that ¥ (a) = ¢(a) for any a € Ry and ¢ (x) = x.
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Constructing Rings and Fields

FACTORIZATION OF POLYNOMIALS OVER A FIELD

Recall that we are concerned with finding zeros of polynomials. Let E and F be
fields, with F < E. Suppose that f(x) € F[x] factors in F[x], so that f(x) = g(x)h(x) for
g(x), h(x) € F[x] and let @ € E. Now for the evaluation homomorphism ¢, , we have

f(@) = ¢ (f(0) = P (8)1(x)) = Pa(g(x))¢o(h(x)) = gle)h(e).
Thus if & € E, then f(a) = 0 if and only if either g(o) = 0 or k() = 0. The attempt to
find a zero of f(x) is reduced to the problem of finding a zero of a factor of f(x). This is
one reason why it is useful to study factorization of polynomials.
The Division Algorithm in F[x]

The following theorem is the basic tool for our work in this section. Note the similarity
with the division algorithm for Z given in Theorem 6.2, the importance of which has
been amply demonstrated.

We prove the following lemma, which is used in our proof of the division algorithm.

Let F be a field and f(x), g(x), s(x) € F[x] with g(x) # 0. If
deg(f(x) — g(x)s(x)) > deg(g(x)),
then there is a polynomial s;(x) € F[x] such that either
deg(f(x) — g(x)s1(x)) < deg(f(x) — g(x)s(x))

or

fx) — g)s1(x) = 0.

Let n = deg(f(x) — g(x)s(x)). We can write (f(x) — g(x)s(x)) = a,x" + r(x) where a, #*
0 and either r(x) = 0 or deg(r(x)) < n. Similarly, since g(x) # 0, we can write g(x) =
bixk + g1(x) where b # 0 and either g (x) = 0 or deg(g;(x)) < k.

We let 51(x) = s(x) + :—:x""‘ . Then

F) — 8100 = £(x) — g(Isx) — g(x)Z—:x"-*
=ax" + r(x) — bk,\J‘Z—"x"_k - gl(x)?f‘_"
k k
=r() - gl(x)Z—"ﬂ"‘.
k

Each polynomial r(x) and gl(x)‘;fx"_k is either O or has degree less than n. Thus
r(x) — gl(x)ﬁ—:x"_k =0 or deg(r(x) — gl(x)z—:x"_") < n = deg(f(x) — g(x)s(x)), which
completes the proof. *

(Division Algorithm for F[x]) Let

fO=ax"+a X"+ +a
and

8(0) = byX™ + by X" -+ by

be two elements of F[x], with a, and b,, both nonzero elements of F and m > 0. Then
there are unique polynomials g(x) and r(x) in F[x] such that f(x) = g(x)q(x) + r(x),
where either r(x) = O or the degree of r(x) is less than the degree m of g(x).



Proof

28.3 Example

28.4 Corollary

Proof

Section 28  Factorization of Polynomials over a Field 229

Consider the set S = {f(x) — g(x)s(x) | s(x) € F[x]}. If 0 € S then there exists an s(x)
such that f(x) — g(x)s(x) = 0, so f(x) = g(x)s(x). Taking g(x) = s(x) and r(x) = 0, we
are done. Otherwise, let 7(x) be an element of minimal degree in S. Then
fx) = g(x)g(x) + r(x)
for some g(x) € F[x]. By Lemma 28.1, the degree of r(x) is less than the degree of g(x)
since if the degree of r(x) were at least as large as the degree of g(x), then r(x) would
not have minimal degree in S.
For uniqueness, if

fG) = g()q1(x) + ri(x)
and

fx) = g(¥)g2(x) + ra(x),
then subtracting we have

8Mg1(x) — g2(x)] = r2(x) — r1(x).

Because either r(x) — ri(x) = 0 or the degree of ra(x) — ri(x) is less than the degree of
g(x), this can hold only if g;(x) — g2(x) = 0 s0 ¢1(x) = g2(x). Then we must also have
r2(x) — ri(x) = 0 50 r1(x) = r(x). g

We can compute the polynomials g(x) and r(x) of Theorem 28.2 by long division
just as we divided polynomials in R[x] in high school.
Let us work with polynomials in Zs[x] and divide
fO=x"-33+22 +4x -1

by g(x) = x> — 2x + 3 to find g(x) and r(x) of Theorem 28.2. The long division should
be easy to follow, but remember that we are in Zs[x], so, for example, 4x — (—3x) = 2x.

X —-x-3
- +3 -3+ 22 +dx -1
x— 23 +3x2
- - 2 +4x
-8 +2%2-3x
—-32+2—1
-32+ x—4
x+3
Thus
q(x)=x2—x—3, and r(x)=x+3. A

We give three important corollaries of Theorem 28.2. The first one appears in high
school algebra for the special case F[x] = R[x]. We phrase our proof in terms of the
mapping (homomorphism) approach described in Section 27.

(Factor Theorem) An element a € F is a zero of f(x) € F[x] if and only if x —ais a
factor of f(x) in F[x].

Suppose that for a € F we have f(a) =0. By Theorem 28.2, there exist q(x),
r(x) € F[x] such that

f&x) = (x — a)g(x) + r(x),
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where either r(x) = 0 or the degree of r(x) is less than 1. Thus we must have r(x) = ¢

forc € F, so
) =G —a)gx) +c.

Applying our evaluation homomorphism, ¢, : F[x] — F of Theorem 27.4, we find
0 =f(a) =0g(a) +c,

so it must be that ¢ = 0. Then f(x) = (x — a)q(x), so x — a is a factor of f(x).
Conversely, if x — a is a factor of f(x) in F[x], where a € F, then applying our
evaluation homomorphism ¢, to f(x) = (x — a)g(x), we have f(a) = Og(a) = 0. *

28.5 Example Working again in Zs[x], note that 1 is a zero of
O + 323 + 2x + 4) € Zs[x].

Thus by Corollary 28.4, we should be able to factor x* + 3x> + 2x + 4 into (x — 1)g(x)
in Zs[x]. Let us find the factorization by long division.

B4 +4x + 1

x—1| x*+3°+ 2+ 4

x4—x3
4
43 — 4x2
42 + 2x
4x2 — 4x
T a4
x—1

0
Thus x* + 32> + 2x + 4 = (x — 1)(® + 4x% + 4x + 1) in Zs[x]. Since 1 is seen to be a
zero of x> + 4x% + 4x + 1 also, we can divide this polynomial by x — 1 and get

2 +4
a1 P +a2 a1
X — i
0 +4x+1
4x — 4
0

Since x? + 4 still has 1 as a zero, we can divide again by x — 1 and get

x+1
x—1| 2 +4
2 —x
x+4
x—1
0
Thus x* 4+ 323 + 2x+ 4 = (x — 1)3(x + 1) in Zs][x]. A

The next corollary should also look familiar.
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A nonzero polynomial f(x) € F[x] of degree n can have at most r zeros in a field F.
The preceding corollary shows that if a; € F is a zero of f(x), then
f@) =& —a)q1),

where, of course, the degree of g;(x) is n — 1. A zero a, € F of g;(x) then results in a
factorization

f&x) = (x — a1)(x — az)q2(x).

Continuing this process, we arrive at

f)=x—ap)---(x—a)g,x),

where g,(x) has no further zeros in F. Since the degree of f(x) is n, at most n factors
(x — a;) can appear on the right-hand side of the preceding equation, so r < n. Also, if
b#a;fori=1,--- ,rand b € F, then

f®)=@®-a)---(b—ang:b) #0,

since F has no divisors of 0 and none of b — a; or g,(b) are 0 by construction. Hence the
a;fori=1,---,r < nare all the zeros in F of f(x). *

Our final corollary is concerned with the structure of the multiplicative group F* of
nonzero elements of a field F, rather than with factorization in F[x]. It may at first seem
surprising that such a result follows from the division algorithm in F[x], but recall that
the result that a subgroup of a cyclic group is cyclic follows from the division algorithm
in Z.

If G is a finite subgroup of the multiplicative group (F*,-) of a field F, then G is cyclic.
In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.

By Theorem 9.12 as a finite abelian group, G is isomorphic to a direct product Zg, x
Zg, X - -+ X ZLg,, where each d; is a power of a prime. Let us think of each of the Z,, as a
cyclic group of order d; in multiplicative notation. Let m be the least common multiple
of all the d; fori =1,2,--- ,r; note that m < did, - - - d,. If a; € Z,, then a,.d" =1, so
a;™ = 1 since d; divides m. Thus for all « € G, we have o™ = 1, so every element of
G is zero of x™ — 1. But G has did, - - - d, elements, while x™ — 1 can have at most m
zeros in the field F by Corollary 28.6, so m > dd, - - - d,. Hence m = d\d, - - - d,, so
the primes involved in the prime powers d, ds, - - - ,d, are distinct, and the group G is
isomorphic to the cyclic group Zj,.

Exercises 5 through 8 ask us to find all generators of the cyclic groups of units for
some finite fields. The fact that the multiplicative group of units of a finite field is cyclic
has been applied in algebraic coding and combinatorial designs.

Irreducible Polynomials

Our next definition singles out a type of polynomial in F[x] that will be of utmost
importance to us. The concept is probably already familiar. We really are doing high
school algebra in a more general setting.

A nonconstant polynomial f(x) € F[x] is irreducible over F or is an irreducible
polynomial in F[x] if f(x) cannot be expressed as a product g(x)h(x) of two polyno-
mials g(x) and h(x) in F[x] both of lower degree than the degree of f(x). If f(x) € F[x]
is a nonconstant polynomial that is not irreducible over F, then f(x) is reducible
over F. [ ]
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Note that the preceding definition concerns the concept irreducible over F and not
just the concept irreducible. A polynomial f(x) may be irreducible over F, but may not
be irreducible if viewed over a larger field E containing F. We illustrate this.

Theorem 27.11 shows that x2 — 2 viewed in Q[x] has no zeros in Q. This shows that
x% — 2 is irreducible over Q, for a factorization x> — 2 = (ax + b)(cx + d) for a, b, c,
d € Q would give rise to zeros of x> — 2 in Q. However, x> — 2 viewed in R[x] is not
irreducible over R, because x2 — 2 factors in R[x] into (x — v/2)(x + +/2). A

It is worthwhile to remember that the units in F[x] are precisely the nonzero ele-
ments of F. Thus we could have defined an irreducible polynomial f(x) as a nonconstant
polynomial such that in any factorization f(x) = g(x)h(x) in F[x], either g(x) or h(x) is a
unit.

Let us show that f(x) = x> + 3x 4 2 viewed in Zs[x] is irreducible over Zs. If x> 4+ 3x +
2 factored in Zs[x] into polynomials of lower degree then there would exist at least one
linear factor of f(x) of the form x — a for some a € Zs. But then f(a) would be 0, by
Corollary 28.4. However, f(0) = 2, f(1) = 1, f(—1) = =2, f(2) = 1, and f(-2) = -2,
showing that f(x) has no zeros in Zs. Thus f(x) is irreducible over Zs. This test for
irreducibility by finding zeros works nicely for quadratic and cubic polynomials over a
finite field with a small number of elements. A

Irreducible polynomials will play a very important role in our work from now on.
The problem of determining whether a given f(x) € F[x] is irreducible over F may be
difficult. We now give some criteria for irreducibility that are useful in certain cases.
One technique for determining irreducibility of quadratic and cubic polynomials was
illustrated in Examples 28.9 and 28.10. We formalize it in a theorem.

Let f(x) € F[x], and let f(x) be of degree 2 or 3. Then f(x) is reducible over F if and
only if it has a zero in F.

If f(x) is reducible so that f(x) = g(x)h(x), where the degree of g(x) and the degree of
h(x) are both less than the degree of f(x), then since f(x) is either quadratic or cubic,
either g(x) or h(x) is of degree 1. If, say, g(x) is of degree 1, then except for a possible
factor in F, g(x) is of the form x — a. Then g(a) = 0, which implies that f(a) = 0, so
f(x)has azeroin F.

Conversely, Corollary 28.4 shows that if f(a) = 0 for a € F, then x — a is a factor
of f(x), so f(x) is reducible. *

We turn to some conditions for irreducibility over Q of polynomials in Q[x]. The
most important condition that we shall give is contained in the next theorem. The proof
is to be worked out in Exercises 38—40.

If f(x) € Z[x], then f(x) factors into a product of two polynomials of lower degrees r
and s in Q[x] if and only if it has such a factorization with polynomials of the same
degrees r and s in Z[x]. ¢

If f(x) = X" + ap_1 X' + - - 4+ ag is in Z[x] with ag # 0, and if f(x) has a zero in Q,
then it has a zero m in Z, and m must divide ay.

If f(x) has a zero a in Q, then f(x) has a linear factor x — a in Q[x] by Corollary 28.4.
But then by Theorem 28.12, f(x) has a factorization with a linear factor in Z[x], so for
some m € Z we must have

f@=@—m(@ "'+ —ao/m).
Thus ag/m is in Z, so m divides ag. *
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Corollary 28.13 gives us another proof of the irreducibility of x2 — 2 over Q, for x> — 2
factors nontrivially in Q[x] if and only if it has a zero in Q by Theorem 28.11. By
Corollary 28.13, it has a zero in Q if and only if it has a zero in Z, and moreover the
only possibilities are the divisors £1 and 2 of 2. A quick check shows that none of
these numbers is a zero of x% — 2. A

Let us use Theorem 28.12 to show that
fO =x*—22+8x+1

viewed in Q[x] is irreducible over Q. If f(x) has a linear factor in Q[x], then it has a
zero in Z, and by Corollary 28.13, this zero would have to be a divisor in Z of 1, that is,
either 1. But (1) = 8, and f(—1) = —8, so such a factorization is impossible.

If f(x) factors into two quadratic factors in Q[x], then by Theorem 28.12, it has a

factorization.
(@ +ax+ b)Y + cx + d)

in Z[x]. Equating coefficients of powers of x, we find that we must have
bd=1, ad+bc=8, ac+b+d=-2, and a+c=0

for integers a, b, c,d € Z. From bd = 1, we see that either b=d=1orb=d = —1.
In any case, b =d and from ad + bc = 8, we deduce that d(a + ¢) = 8. But this is
impossible since a + ¢ = 0. Thus a factorization into two quadratic polynomials is also
impossible and f(x) is irreducible over Q. A

We conclude our irreducibility criteria with the famous Eisenstein criterion for
irreducibility. An additional very useful criterion is given in Exercise 37.

(Eisenstein Criterion) Let p € Z be a prime. Suppose that f(x) = a,x" +--- +ap is
in Z[x], and a, % 0 (mod p), but a; = 0 (mod p) for all i < n, with ap % 0 (mod p?).
Then f(x) is irreducible over Q.

By Theorem 28.12 we need only show that f(x) does not factor into polynomials of
lower degree in Z[x]. If

f®) = (b + -+ bo) (e + - + o)

is a factorization in Z[x], with b, # 0,c; # O and r, s < n, then ay # 0 (mod p?) implies
that by and ¢( are not both congruent to 0 modulo p. Suppose that by # 0 (mod p) and
¢o = 0 (mod p). Now a, # 0 (mod p) implies that b,,c; # 0 (mod p), since a, = b,c;,.
Let m be the smallest value of k such that ¢; # 0 (mod p). Then

bmeo if r > m,

am=b00m+blcm—l+"'+ o e

byCp—y if r < m.
The fact that neither by nor c,, are congruent to 0 modulo p while ¢,,_1, - - , co are all
congruent to 0 modulo p implies that a,, # 0 modulo p, so m = n. Consequently, s = n,
contradicting our assumption that s < n; that is, that our factorization was nontrivial.

*

Note that if we take p = 2, the Eisenstein criterion gives us still another proof of
the irreducibility of x2 — 2 over Q.

Taking p = 3, we see by Theorem 28.16 that
250 —9x* — 3¢ — 12

is irreducible over Q. A
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The polynomial

xP—1
Dp(x) = — =xPl 4P 24 x4 1

x—1
is irreducible over Q for any prime p.

Again by Theorem 28.12, we need only consider factorizations in Z[x]. We remarked
following Theorem 27.4 that its proof actually shows that evaluation homomorphisms
can be used for commutative rings. Here we want to use the evaluation homomor-
phism ¢.41 : Q[x] = Q[x]. It is natural for us to denote ¢,;1(f(x)) by f(x+ 1) for
f(x) € Q[x]. Let

4 PYop-14 ...
(x+1)p_1_x +(1x +---+px

80 = B+ D= T -

The coefficient of xP~" for 0 < r < p is the binomial coefficient p!/[r!(p — r)!], which
is divisible by p because p divides p! but does not divide either r! or (p — r)! when
0 < r <p. Thus

go) =xP~t + (l;) P2t tp
satisfies the Eisenstein criterion for the prime p and is thus irreducible over Q. But if
@, (x) = h(x)r(x) were a nontrivial factorization of ®,(x) in Z[x], then
D, (x+ 1) =g(x) = h(x+ Dr(x+ 1)

would give a nontrivial factorization of g(x) in Z[x]. Thus ®,(x) must also be irreducible
over Q. *

The polynomial ®,(x) in Corollary 28.18 is the p'® cyclotomic polynomial.

Uniqueness of Factorization in F[x]

Polynomials in F[x] can be factored into a product of irreducible polynomials in F[x]
in an essentially unique way. For f(x), g(x) € F[x] we say that g(x) divides f(x) in F[x]
if there exists g(x) € F[x] such that f(x) = g(x)q(x). Note the similarity of the theorem
that follows with Property (1) for Z following Example 6.9.

Let p(x) be an irreducible polynomial in F[x]. If p(x) divides r(x)s(x) for r(x),s(x) €
Fl[x], then either p(x) divides r(x) or p(x) divides s(x).

We delay the proof of this theorem to Section 31. (See Theorem 31.27.) *

If p(x) is irreducible in F[x] and p(x) divides the product r(x) - - - r,,(x) for ri(x) € F[x],
then p(x) divides r;(x) for at least one i.

Using mathematical induction, we find that this is immediate from Theorem 28.19. &

If F is a field, then every nonconstant polynomial f(x) € F[x] can be factored in F[x] into
a product of irreducible polynomials, the irreducible polynomials being unique except
for order and for unit (that is, nonzero constant) factors in F.

Let f(x) € F[x] be a nonconstant polynomial. If f(x) is not irreducible, then f(x) =
g(x)h(x), with the degree of g(x) and the degree of h(x) both less than the degree of f(x).
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If g(x) and h(x) are both irreducible, we stop here. If not, at least one of them factors
into polynomials of lower degree. Continuing this process, we arrive at a factorization
f@) =p1®)p2(x) - - - pr(x),
where p;(x) is irreducible fori = 1,2,--- ,r.
It remains for us to show uniqueness. Suppose that
f&) =p1@)p2(x) - - - pr(x) = q1(¥)q2(x) - - - g5(x)
are two factorizations of f(x) into irreducible polynomials. Then by Corollary 28.20,
p1(x) divides some gj(x), let us assume g, (x). Since g, (x) is irreducible,
q1(x) = wp1(x),
where u; # 0, but u; is in F and thus is a unit. Then substituting u;p; (x) for ¢;(x) and
canceling, we get
Pp2(x) -+ - pr(x) = u1g2(x) - - - g5(x).

By a similar argument, say g>(x) = upp>(x), so

p3(x) -+ pr(x) = uruags(x) - - - gs(x).

Continuing in this manner, we eventually arrive at
L =wmuy - urGr1(%) - - - g5(x).

This is only possible if s = r, so that this equation is actually 1 = uju; - - - u,. Thus
the irreducible factors p;(x) and g;(x) were the same except possibly for order and unit
factors. *

28.22 Example Example 28.5 shows a factorization of x* + 3x> + 2x + 4 in Zs[x] is (x — 1)*(x + 1).
These irreducible factors in Zs[x] are only unique up to units in Zs[x], that is, nonzero
constants in Zs. For example, (x — 1)3(x + 1) = (x — 1)2(2x — 2)(3x + 3). A

m EXERCISES 28

Computations

In Exercises 1 through 4, find g(x) and r(x) as described by the division algorithm so that f(x) = g(x)q(x) + r(x)
with r(x) = 0 or of degree less than the degree of g(x).

1 f(x) = x5 +3x° + 4x2 — 3x + 2 and g(x) = % + 2x — 3 in Z7[x].
2. f(x) = x84 3% + 4% — 3x + 2 and g(x) = 3x% + 2x — 3 in Z7[x].
3. f()=x —2x* +3x— 5and g(x) = 2x + 1 in Zy; [x].

4. f(x) =x* + 5x3 — 3x% and g(x) = 5x* — x + 2 in Z1[x].

In Exercises 5 through 8, find all generators of the cyclic multiplicative group of units of the given finite field.
(Review Corollary 6.17.)

5. Zs 6. Z7 7. Z17 8. Zy

9. The polynomial x* + 4 can be factored into linear factors in Zs[x]. Find this factorization.
10. The polynomial x3 + 242 4 2x + 1 can be factored into linear factors in Z7[x]. Find this factorization.
11. The polynomial 2x3 + 3x2 — 7x — 5 can be factored into linear factors in Z; [x]. Find this factorization.

12. Is x® + 2x 4 3 an irreducible polynomial of Zs[x]? Why? Express it as a product of irreducible polynomials
of Zs[x].
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13. Is 23 + x> + 2x + 2 an irreducible polynomial in Zs[x]? Why? Express it as a product of irreducible
polynomials in Zs[x].

14. Show that f(x) = x2 + 8x — 2 is irreducible over Q. Is f(x) irreducible over R? Over C?

15. Repeat Exercise 14 with g(x) = 2 + 6x + 12 in place of f(x).

16. Demonstrate that x> + 3x2 — 8 is irreducible over Q.

17. Demonstrate that x* — 22x2 + 1 is irreducible over Q.

In Exercises 18 through 21, determine whether the polynomial in Z[x] satisfies an Eisenstein criterion for irre-
ducibility over Q.

18. 22— 12 19. 8x° +6x2 — 9x + 24

20. 4x'0 — 9x3 4 24x — 18 21. 2x10 — 25x3 4+ 1022 — 30

22. Find all zeros of 6x* + 17x3 + 7x% + x — 10 in Q. (This is a tedious high school algebra problem. You might
use a bit of analytic geometry and calculus and make a graph, or use Newton’s method to see which are the
best candidates for zeros.)

Concepts
In Exercises 23 and 24, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.
23. A polynomial f(x) € F[x] is irreducible over the field F if and only if f(x) # g(x)h(x) for any polynomials
8(x), h(x) € F[x].
24. A nonconstant polynomial f(x) € F[x] is irreducible over the field F if and only if in any factorization of it in
F[x], one of the factors is in F.
25. Determine whether each of the following is true or false.
a. x — 2 is irreducible over Q.
b. 3x — 6 is irreducible over Q.
¢. x2 — 3 is irreducible over Q.
d. x2 + 3 is irreducible over Z7.
e. If F is a field, the units of F[x] are precisely the nonzero elements of F.
f. If F is a field, the units of F(x) are precisely the nonzero elements of F.
g. A polynomial f(x) of degree n with coefficients in a field F can have at most n zeros in F.

h. A polynomial f(x) of degree n with coefficients in a field F can have at most n zeros in any given field E
such that F < E.

i. Every polynomial of degree 1 in F[x] has at least one zero in the field F.
j- Each polynomial in F[x] can have at most a finite number of zeros in the field F.

26. Find all prime numbers p such that x + 2 is a factor of x* + x> + x2 — x + 1 in Z,[x].
In Exercises 27 through 30, find all irreducible polynomials of the indicated degree in the given ring.

27. Degree 2 in Z[x] 28. Degree 3 in Z[x]

29, Degree 2 in Z3[x] 30. Degree 3 in Z3[x]

31. Find the number of irreducible quadratic polynomials in Zy[x], where p is a prime. [Hint: Find the number
of reducible polynomials of the form x> 4 ax + b, then the number of reducible quadratics, and subtract this
from the total number of quadratics.]

Proof Synopsis

32. Give a synopsis of the proof of Corollary 28.6.

33. Give a synopsis of the proof of Corollary 28.7.
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Theory
34. Show that for p a prime, the polynomial x” + a in Z,[x] is not irreducible for any a € Z,.
35. If F is a field and a # 0 is a zero of f(x) = ap + a1x + - - - + a»x" in F[x], show that 1/a is a zero of a, +
an—1x + - - - + apx".
36. (Remainder Theorem) Let f(x) € F[x] where F is a field, and let @ € F. Show that the remainder r(x) when
f(x) is divided by x — «, in accordance with the division algorithm, is f(a).
37. Let oy, : Z — Z,, be the natural homomorphism given by o,,(a) = (the remainder of a when divided by m)
fora € Z.
a. Show that o, : Z[x] — Zm[x] given by
Tm(a0 + a1x + - - - + aux") = oim(ag) + om(@)x + - - - + om(an)x"
is a homomorphism of Z[x] onto Z,,[x].
b. Show that if f(x) € Z[x] and T»(f(x)) both have degree n and o,,(f(x)) does not factor in Z;,[x] into two
polynomials of degree less than n, then f(x) is irreducible in Q[x].

¢. Use part (b) to show that *© + 17x + 36 is irreducible in QIx]. [Hint: Try a prime value of m that simplifies
the coefficients.]

The goal of Exercises 38 through 40 is to prove Theorem 28.12.

38. Let f(x) € Z[x]. We say that f(x) = a,x" + a,—18"~! + - + ap is primitive if the greatest common divisor
of the coefficients ag, ai, . . ., a, is 1. Prove the product of two primitive polynomials is primitive.

39. Let f(x) € Z[x]. The content of f(x) = ax" + an— 114 ... 4 qg is defined to be the greatest common
divisor of ap, ai, . . ., a, and it is denoted cont(f(x)). Prove that cont(f(x)g(x)) = cont(f(x)) - cont(g(x)) for any
f(x), g(x) € Z[x]. (Hint: Use Exercise 38.)

40. Prove Theorem 28.12. (Hint: Use Exercise 39.)

secTioN 29 TALGEBRAIC CODING THEORY

Suppose you wish to send a message, but occasionally the transmission line makes an
error. When an error occurs, it would be nice if the receiver could detect that there is
an error and ask you to resend the message. In other situations, such as a space probe
transmitting images back to earth, it may be impossible to resend the data. In this case,
it would be desirable if the receiving earthling could not only detect, but also correct a
transmission error.

We will think of a message as an element in Z’z‘ =7y x Ly X --- X Z,. Each mes-
sage consists of a string of zeros and ones of length k. Each of the Z, entries will be
referred to as a bit. Coding theory in general allows transmitted messages to be in F"
for any finite field F, but for our introduction to the subject we will restrict our attention
toF = Zz.

29.1 Example A common way to detect a single-bit error is to use a parity check bit. Instead of trans-
mitting a byte consisting of eight bits, that is, an element in Zg, nine bits are transmitted
with the last bit being the sum in Z, of the first eight bits. The message

(1,1,0,1,0,0,1,1)
would be transmitted as
(1,1,0,1,0,0,1,1,1).

Regardless of whether the 8-bit message has an even or odd number of ones, the trans-
mitted string of 9 bits has an even number of ones. If the sum of the nine bits of the
received message is not zero, then a transmission error must have occurred. A

¥ This section is not used in the remainder of the text.
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An inefficient, but possible method of correcting transmission errors is to send a mes-
sage three times. If two of the received messages agree, then that common message is
accepted as the most likely correct message. In this case, if there is only one error, the
original message will be retrieved. A

A code is a subset C C Z5. An element of C is a code word. The length of a code word
inC C Zjisn. [ ]

In practice, when a message is to be sent, it is broken into shorter pieces consisting
of k bits. A predetermined one-to-one function f : Z% — C mapping all possible k bit
messages to code words is then applied to the message pieces and transmitted. The
receiver then checks that each received message piece is in the range of f. If so, the
sent code word is most likely the received code word and the message corresponding to
the received code word can be computed since f is one-to-one. If the received message
is not a code word, then a transmission error occurred. We will not concern ourselves
with the function f. Instead, we will investigate certain types of codes. We restrict our
attention to linear codes as defined below.

A linear code is a subgroup C of Zj. Since C is a subgroup of Z3, the order of C is
2% for some integer k. The information rate or rate of the linear code is the ratio Z—‘,
A linear code is cyclic if for any code word (ag, a1, . . . , @y-1), (@n—1, a0, a1, . - . , Ap—2) iS
also a code word. That is, a linear code is cyclic if a cyclic shift of any code word is a
code word. n

An information rate of 1—“ means that in order to transmit a message of length , r bits are
required. It is clearly desirable to make the information rate as large as possible subject
to the desired number of bit errors that can be detected or corrected.

Let C C Z3 be the set of all strings of length 9 such that the sum of the bits is 0 modulo
2 as in Example 29.1. Note that C is the kernel of the group homomorphism

¢:75—> 7Ly
given by
¢(ag,ay,...,ag) =ap+a; +---+ag (mod?2).

Thus C is a subgroup of Z and therefore C is a linear code. In this example, n = 9 and
k = 8 since C is a subgroup of ZJ with index 2. Thus C has an information rate of g.
Furthermore, the code is cyclic since any cyclic shift of a code word does not change
the number of ones. A

If two code words differ in only one position, then it would not be possible to detect
every error that occurs in just one bit. If any pair of code words differ in two or more
positions, then any error of just one bit could be detected, that is, it could be determined
that there is an error, but it may not be possible to reconstruct the original code word.
Furthermore, if any pair of code words differ at three or more positions, then an error
of just one bit could not only be detected, but it could be corrected since only one code
word would differ from the erroneous word at one position.

The Hamming weight or weight of a string in Z7 is the number of ones in the string.
The Hamming distance or distance between two strings in Zj is the number of bits
where the two strings differ. a

The Hamming weight of the string (1,0,0,1,1,0,1,1) is 5. The Hamming distance
between the code words (1,0,0,0,1,1,0,1) and (1,1,0,1,0,0,0, 1) is 4. A
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For a linear code C, the minimum weight among the nonzero code words of C is the
same as the minimum distance between two different code words.

For any two code words w, u € Z5, the distance between w and u is the number of bits
where the words differ. That is, the weight of w — u is the distance between w and u.
Since C is a subgroup of Z3, w — u € C. Thus the minimum weight of nonzero code
words is less than or equal to the minimum distance between two different code words.
We also notice that 0 € Zj is a code word, so the weight of a code word w is the distance
between 0 and w, which implies that the minimum distance between two different code
words is less than or equal to the minimum weight among the nonzero code words. @

If the Hamming distance between any two different code words in a code C is at
least d, then we say that C detects d — 1 bit errors since any change to a code word
in at most d — 1 bits is not a code word. If C is a code in Z3 and for any string v € 73,
there is at most one code word whose Hamming distance from v is d or less, then we
say that C corrects d bit errors. The idea is that if a string is received that is not a
code word, then the best guess for the sent code word is the code word that is closest to
the received string. For a code that corrects d bit errors, by taking the closest code to a
received string we reconstruct the sent code word as long as the number of errors is at
most d.

Let C = {(0,0,0,0),(1,0,1,0),(1,1,0,1),(0, L, 1, 1)} € Z4. It is not difficult to check
that C is a subgroup of Zg, so C is a linear code. The code word (1,0, 1,0) has weight
2 and the other two nonzero code words have weight 3. By Theorem 29.8, the mini-
mum distance between any two code words is 2. Thus C detects one-bit errors, but it
cannot correct a one-bit error. A received message of m = (1,0, 0, 0) differs from both
(0,0,0,0) and (1, 0, 1,0) by only one bit, so even if we know m is only incorrect in one
position, we would not know if the sent code word was (0,0, 0,0) or (1,0, 1,0). A

There are many schemes to generate codes having various properties, but we will
focus on just one method. We can think of an element (ag,ai,as,...,a,1) € Zj as
corresponding to the coefficients of the polynomial ag + a1 x 4+ a2 + -+ - + a,_1xX* ! €
Z[x]. In this way, instead of thinking of code words as strings of zeros and ones of
length n, we can think of them as polynomials in Z,[x] of degree at most n — 1. We
note that this correspondence is a group isomorphism ¢ mapping Z} onto the additive
group of polynomials in Z;[x] of degree at mostn — 1.

Let n =5 and g(x) = x> + x + 1. We define C to be all the multiples of x> + x + 1,
including 0, whose degree is less than 5.

C = {f(x)g(x) | f(x) € Z,[x] and either deg(f(x)) < 2 or f(x) = 0}
={0-8(), 1-g(x), x-g(x), x+1)-g),
- g(), (F+1)-g(), (F+x)- g0, P +x+1)-gx)
={0, 2+x+1, 2+ +x F+1,
DA L R I TR N WP S Ao P o b
By reading off the coefficients of these polynomials we determine the code words to be

(0,0,0,0,0) (0,0,1,1,1) (0,1,1,1,0) (0,1,0,0,1)
1,1,1,0,0) (1,1,0,1,1) (1,0,0,1,0) (1,0,1,0, 1).

It is not difficult to check that this collection of elements in Z3 is a subgroup of Z3 and
therefore gives a linear code. The code is not cyclic since (0, 1,0, 0, 1) is a code word,
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but (1,0, 1,0,0) is not a code word. We see that the minimum weight among all the
nonzero code words is 2. By Theorem 29.8, the minimum Hamming distance between
any two code words is also 2, which implies that the code detects a one-bit error, but it
does not correct a one-bit error. A

In Example 29.10, we simply read off the coefficients of the polynomials in C
to construct a linear code. For the rest of this section we will abuse notation slightly
by referring to a set C of polynomials in Z;[x] as a linear code if C is a subgroup of
Zs[x] containing no polynomial of degree n or larger. The fact that ¢ mapping Z7 to
the polynomials of degree at most n — 1 is a group isomorphism assures us that any
subgroup C < Z[x] having no polynomial of degree n or larger provides a linear code
by simply reading off the coefficients of the polynomials in C.

Let g(x) be a polynomial in Z;[x] of degree less than n. Then C = {f(x)g(x) | f(x) €
Z[x] and either f(x) = 0 or deg(f(x)) < n — deg(g(x))} is a linear code. Furthermore,
if the polynomial g(x) is a factor of x" + 1 in Z,[x], then C is a cyclic code.

We first show that C is closed under addition. Let f(x), h(x) € Z,[x] so that each either
has degree less than n — deg(g(x)) or is the 0 polynomial. Then f(x) + h(x) is either the
zero polynomial or else its degree is less than n — deg(g(x)). Therefore

F(0)g(x) + h(x)g(x) = (f(x) + h(x))g(),

which implies that C is closed under addition. Also C contains the 0 polynomial and
if f(x)g(x) € C, then —(f(x)g(x)) = f(x)g(c) € C. Thus C is a subgroup of the additive
group G = {w(x) € Z[x] | w(x) = 0 or deg(w(x)) < n}, which means that C is a linear
code.

Now we assume that g(x) is a factor of x" + 1 in Z,[x], that is, there is a polynomial
h(x) € Z[x] with

h(x)g(x) =x" + 1.
Apparently,
deg(h(x)) = n — deg(g(x)).
Let f(x)g(x) € C. If
deg(f(x)g(x)) <n—1,
then
(f))gx) € C
and xf(x)g(x) simply increases by one the degree of each term in the polynomial
{ f(x)g(x). This implies that xf(x)g(x) € C is a cyclic shift of f(x)g(x). On the other hand,
deg(f(g(x)) =n—1,
then a cyclic shift of the code word f(x)g(x) is
p(x) = xf(x)glx) + (" + 1).
We have
H)g(x) + (¢ + 1) = xf (¥)g(x) + h(x)g(x)
= (f(®) + h(x))g(x)
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Since xf(x) and h(x) each have degree n — deg(g(x)), the coefficient of x"~98E™) jn
their sum is 0. So either xf (x) + A(x) = 0 or deg(xf(x) + h(x)) < n — deg(g(x)). In either
case, the cyclic shift xf(x)g(x) + (x" + 1) is a code word in C. Therefore, C is a cyclic
code. *

The code C in Theorem 29.11 is called the polynomial code of length n generated by
g(x). a

Find the code words for C, the polynomial code of length 7 generated by the polynomial
g(x) = x> + x2 + 1. What is the information rate for C? Determine if C detects a one-
bit error and if so, can C correct a one-bit error? What about detecting and correcting
two-bit errors?

As in Example 29.10, one method of finding all the code words is to multiply every
polynomial of degree 3 or less by g(x), but there is a much simpler method if the code
is cyclic. The polynomial x7 + 1 can be seen to factor in Z,[x] as

1= +2+ D+ 3 +241)

simply by using long division of polynomials. Therefore C is a cyclic code by Theorem
29.11. Since 1 - g(x) = g(x) € C and C contains all cyclic shifts of g(x), we have all the
polynomials in the first column of Figure 29.14 as code words in C. Since C is a group,
CH+2+ D+ +3+x)=x*+ x>+ x4+ 1 € C. The fact that C is cyclic implies
the second column of Figure 29.14 is contained in C. There are 2* = 16 polynomials
of degree less than 4 (including the zero polynomial) with coefficients in Z,. Thus C
contains 16 elements. Since C is a subgroup, the zero polynomial is in C, leaving only
one more polynomial to complete the list. This polynomial must remain the same when
a cyclic shift is applied. Other than the polynomial 0, the only polynomial that remains
the same when a cyclic shift is applied is

B+ 4+ + 2+ 2241

Thus Figure 29.14 gives the code C as polynomials. Figure 29.15 gives the code as
elements in Z].

Since |C| = 2* and the code word length is 7, the information rate is %.

It is easy to see that the minimum weight among all the nonzero code words is 3.
By Theorem 29.8, the minimum distance between code words is 3. So not only can a
single-bit error be detected, it can be corrected. Since the distance between any two code
words is at least 3, the code detects two-bit errors. However, the code does not correct
two-bit errors since a two-bit error could produce a word with Hamming distance of
one from another code word. For example, (0,0, 0,0, 0,0, 1) differs from the code word
(0,0,0,1,1,0,1) in two bits, but it differs from the code word (0, 0,0, 0,0, 0, 0) in only
one bit. A

B2+l A2 4x+1 0 S+ A2 x+1
X2 4+x P+ +x
PHx+2 S+ 42
X4+ +8 P40 +1
x4l B+ +x
PHx+1l  S+5+2+1
B+2+x S+ +x+1

29.14 Figure
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0,0,0,1,1,0,1) (0,0,1,0,1,1,1) (0,0,0,0,0,0,0) (1,1,1,1,1,1,1)
0,0,1,1,0,1,0)  (0,1,0,1,1,1,0)
0,1,1,0,1,0,0) (1,0,1,1,1,0,0)
(1,1,0,1,0,0,0) (0,1,1,1,0,0,1)
(1,0,1,0,0,0,1) (1,1,1,0,0,1,0)
0,1,0,0,0,1,1) (1,1,0,0,1,0,1)
(1,0,0,0,1,1,0) (1,0,0,1,0,1,1)

29.15 Figure

Examples 29.2 and 29.13 each provide a code that can correct a one-bit error. Ex-
ample 29.2 requires sending 24 bits to transmit a message of length 8. That is, the
information rate is % In Example 29.13, in order to transmit a message of length 8, 14
bits are required and the information rate is %. Clearly the code in Example 29.13 is a
much more efficient way of coding data for transmission.

m EXERCISES 29

. If a code has word length 10 and transmission rate of 1, how many code words are in the code?

. If a linear code contains exactly 16 code words and the transmission rate is %, find the length of code words.

. Find all cyclic linear codes C in Zg that have a transmission rate of %

1
2
3. Find the smallest cyclic linear code C that contains (1,0, 0,0, 0).
4
5.

. Find all cyclic linear codes of length n for
an=2 b.n=3 cn=4

. Determine whether each of the following is true or false.

a. A code is a subset of ZJ for some positive integer n.
b. The length of a code word in Z is n.
¢. Every code is a linear code.

d. If the Hamming distance between any two different code words is at least 4, then the code corrects two-bit
errors.

e. If Cis a linear code in Z3, then the information rate is the number of elements in C divided by the number
of elements in Z5.

f. Every linear code contains the code word consisting of all zeros.

g. If the Hamming distance between two code words in a linear code is d, then there is a code word with
Hamming weight d.

h. The set {f(x)g(x) | f(x) € Z>[x]} is the polynomial code of length n generated by g(x) if g(x) € Z>[x] and
g(x) has degree n.

i. Not every polynomial code is cyclic.

j- Every cyclic linear code contains at most two code words that remain the same when a cyclic shift is
applied.

. Letg(x) =3 +x+ 1 € Zo[x].

a. Verify that g(x) is a factor of x” + 1 in Z,[x].

b. Find all the code words in the polynomial code C of length 7 generated by g(x).

¢. Determine if C detects single-bit errors and if so, determine if it corrects single-bit errors.

d. Determine if C detects two-bit errors and if so, determine if it corrects two-bit errors.
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The transmission of a code word from the previous exercise produced the polynomial p(x) = x% + x5 4+ x* +
x3. Was there a transmission error? If so, find the closest code word from C as measured by the Hamming
distance.

Let g(x) = x5 + x> + 1 € Z[x].

a. Verify that g(x) is a factor of X + 1inZ,[x].

b. Find all the code words in the polynomial code C of length 9 generated by g(x).

¢. Determine if C detects single-bit errors and if so, determine if it corrects single-bit errors.

d. Determine if C detects two-bit errors and if so, determine if it corrects two-bit errors.

Let g(x) = x* + x> + x4 1 € Z,[x] and let C be the code generated by g(x) with code word length 7.
a. Is C cyclic?

b. Find all the code words in the polynomial code C of length 7 generated by g(x).

¢. Can C detect one-bit errors and if so, can C correct one-bit errors?

d. Can C detect two-bit errors and if so, can C correct two-bit errors?

Find six polynomials g(x) € Z[x] so that the code generated by g(x) with code words of length 9 is a cyclic
code.

If the minimal weight among all nonzero code words in a cyclic linear code C C Z7 is 1, prove that C = Z5.

Let g(x) be a polynomial in Z;[x]. Prove that if the polynomial code C generated by g(x) with length n is
cyclic, then g(x) is a factor of x" + 1 in Z[x].

Let C € Z} be a linear code with d the minimal weight among the nonzero code words. Determine necessary
and sufficient conditions on d for C to correct k-bit errors.

Let C C Z be a linear code. Show that as a group, C is isomorphic with Z’z‘ for some k.

Is there a polynomial g(x) € Z;[x] such that the code generated by g(x) of length 9 is the same code as in
Example 29.57 Prove your answer.

SecTioN 30 HOMOMORPHISMS AND FACTOR RINGS
Factor Rings

In Section 12 we investigated which subgroups of a given groups could be used to form
a factor group. In this section we wish to do an analogous construction on a ring to form
a factor ring. We start with an example.

30.1 Example For any n € Z, nZ is a subring of Z. Thinking of Z as an abelian group, we know that nZ
is a normal subgroup of Z. As we have seen, Z/nZ = {a + nZ | a € Z} forms a group
using addition defined by adding coset representatives. Furthermore, Z/nZ is a ring
where multiplication is defined by

(a + nZ)(b + nZ) = ab + nZ.

‘We check that this multiplication is well defined. Leta’ € a + nZ and b’ € b + nZ. Then
d = a+ nk and b’ = b + nr for some integers k and r. Thus

a'b' = (a+ nk)(b + nr)
= ab + n(kb + knr) + anr
= ab + n(kb + knr + ar)
€ ab+nZ.

From this calculation we see that regardless of which representatives from a + nZ and
b + nZ we pick, our product is in the coset ab + nZ. So we have a well-defined multi-
plication on the cosets of nZ. A



Looking at the second line of the above computation, we can see that what was needed to
verify a'b’ € ab + nZ is that n(kb + knr) + anr € nZ. The key to make this computation
work is that when an element of Z is multiplied by an element of nZ, the product is in
nZ. This observation is the reason for the following definition.

aN ={an|lne N}CN and Na={na|lneN}CN forallaeR. [ ]

We see that nZ is an ideal in the ring Z since we know it is a subring, and s(nm) =
(nm)s = n(ms) € nZ for all s € Z. A

Let F be the ring of all functions mapping R into R, and let C be the subring of F
consisting of all the constant functions in F. Is C an ideal in F? Why?
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30.2 Definition  An additive subgroup N of the ring R is an ideal if
30.3 Example
30.4 Example
Solution

It is not true that the product of a constant function with every function is again a
constant function. For example, the product of sin x and 2 is the function 2 sin x. Thus
C is not an ideal of F. A

m HISTORICAL NOTE

It was Ernst Eduard Kummer (1810-1893) who
introduced the concept of an “ideal complex
number” in 1847 in order to preserve the notion
of unique factorization in certain rings of alge-
braic integers. In particular, Kummer wanted to
be able to factor into primes numbers of the form
ay+ a1 + a4+ ap_lap_l, where ¢ is a
complex root of x? = 1 (p prime) and the g; are or-
dinary integers. Kummer had noticed that the naive
definition of primes as “unfactorable numbers”
does not lead to the expected results; the product
of two such “unfactorable” numbers may well be
divisible by other “unfactorable” numbers. Kum-
mer defined “ideal prime factors” and “ideal num-
bers” in terms of certain congruence relationships;
these “ideal factors” were then used as the divisors

necessary to preserve unique factorization. By use
of these, Kummer was in fact able to prove cer-
tain cases of Fermat’s Last Theorem, which states
that X" + y" = 7" has no solutions x,y,z € Z* if
n>2.

It turned out that an “ideal number,” which was
in general not a “number” at all, was uniquely de-
termined by the set of integers it “divided.” Richard
Dedekind took advantage of this fact to identify the
ideal factor with this set; he therefore called the set
itself an ideal, and proceeded to show that it satis-
fied the definition given in the text. Dedekind was
then able to define the notions of prime ideal and
product of two ideals and show that any ideal in the
ring of integers of any algebraic number field could
be written uniquely as a product of prime ideals.

30.5 Example

Solution

30.6 Theorem

Let F be as in the preceding example, and let N be the subring of all functions f such
that f(2) = 0. Is N an ideal in F? Why or why not?

Letf € N and let g € F. Then (f2)(2) = f(2)g(2) = 0g(2) = 0, so fg € N. Similarly, we
find that gf € N. Therefore N is an ideal of F. A

(Analogue of Theorem 12.7) Let H be an additive subgroup of the ring R. Multipli-
cation of additive cosets of H is well defined by the equation

(@a+H)b+H)=ab+H

if and only if H is an ideal in R.
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Proof Suppose first that H is an ideal in R. Let a,b € R, d' € a+ H, and b’ € b+ H. There

30.7 Corollary

30.8 Definition

30.9 Definition

are elements hy,hy € H witha' = a + h, and ¥’ = b + h,. We have
adb =(a+h)b+h)
=ab + ahy + hib + hihy
€eab+H since H is an ideal.

‘We now suppose that (a + H)(b + H) = ab + H defines a binary operation on cosets of
H in R. We let a € R and h € H with the goal of showing that aH C H and Ha C H.
Sinceh+ H=0+H,

H=0a+H=0+H)a+H) =Mh+H)(@a+H) =ha+H.

This shows ha € H, which implies Ha € H. Similarly,
H=a0+H=(@+HO+H) =@+H)Mh+H) =ah+H.

This shows ak € H and therefore aH C H. Thus H is an ideal in R. L

Once we know that multiplication by choosing representatives is well defined on
additive cosets of a subring N of R, the associative law for multiplication and the dis-
tributive laws for these cosets follow immediately from the same properties in R. We
have at once this corollary of Theorem 30.6.

(Analogue of Corollary 12.8) Let N be an ideal of a ring R. Then the additive cosets
of N form a ring R/N with the binary operations defined by
@+N)+@G+N)=@+b)+N

and
(@+N)b+N)=ab+N. .

The ring R/N in the preceding corollary is the factor ring (or quotient ring) of R
by N. ]

If we use the term quotient ring, be sure not to confuse it with the notion of the field
of quotients of an integral domain, discussed in Section 26.

Homomorphisms

We defined the concepts of homomorphism and isomorphism for rings in Section 22,
since we wished to talk about evaluation homomorphisms for polynomials and about
isomorphic rings. We repeat some definitions here for easy reference. Recall that a ho-
momorphism is a structure-relating map. A homomorphism for rings must relate both
their additive structure and their multiplicative structure.

A map ¢ of aring R into a ring R’ is a homomorphism if
#(a+b) = ¢(a) + (b)

and

$(ab) = p(a)p(b)
for all elements a and b in R. [ ]

In Example 22.10 we defined evaluation homomorphisms, and Example 22.11
showed that the map ¢ : Z — Z,, where ¢(m) is the remainder of m when divided



246

Part VI

30.10 Example

30.11 Theorem

Proof

Constructing Rings and Fields

by n, is a homomorphism. We give another simple but very fundamental example of a
homomorphism.

(Projection Homomorphisms) Let Ri,R;,--- , R, be rings. For each i, the map 7; :
Ri X Ry X -+- X Ry, — R; defined by 7i(r1,r2,--- ,r,) = r; is a homomorphism, pro-
Jection onto the ith component. The two required properties of a homomorphism hold
for m; since both addition and multiplication in the direct product are computed by

addition and multiplication in each individual component. A

Properties of Homomorphisms

‘We continue to parallel our development of ring homomorphisms and factor rings with
the analogous material for group homomorphisms and factor groups.

Let ¢ : R — R’ be a ring homomorphism.
1. If 0 is the additive identity in R, then ¢(0) = (' is the additive identity in R’.
If a € R, then ¢(—a) = —¢(a).
If S is a subring of R, then ¢[S] is a subring of R'.
If §' is a subring of R, then ¢~![§'] is a subring of R.
If R has unity 1, then ¢(1) is unity for ¢[R].
If N is an ideal in R, then ¢[N] is an ideal in @[R].
If N’ is an ideal in either R’ or ¢[R], then ¢~'[N'] is an ideal in R.

N, AR WD

Let ¢ be a homomorphism of a ring R into a ring R'. Since, in particular, ¢ can be viewed
as a group homomorphism of (R,+) into (R’,+’), Theorem 8.5 tells us that ¢(0) = 0/
is the additive identity element of R’ and that ¢(—a) = —¢(a).

Theorem 8.5 also tells us that if S is a subring of R, then, considering the additive
group (S, +), the set (¢[S], +’) gives a subgroup of (R, +'). If ¢(s;) and ¢(s;) are two
elements of ¢[S], then

O(s1)P(52) = P(5152)

and ¢(s152) € ¢[S]. Thus @(s1)P(s2) € d[S], so @[S] is closed under multiplication.
Consequently, ¢[S] is a subring of R'.

Going the other way, Theorem 8.5 also shows that if §’ is a subring of R’, then
(¢~ '[S'], +) is a subgroup of (R, +). Leta,b € ¢~![§'], so that ¢(a) € §' and p(b) € §'.
Then

¢(ab) = ¢p(a)p(b).

Since ¢(a)p(b) € §', we see that ab € ¢~1[S'], so ¢~![§'] is closed under multiplication
and thus is a subring of R.
If R has unity 1, then for all r € R,

&(r) = ¢(1r) = ¢(rl) = ¢(1)(r) = ¢(N(1),
50 ¢(1) is unity for ¢[R].
The proof of the remainder of the theorem is Exercise 22. L 2

Note in Theorem 30.11 that ¢(1) is unity for ¢[R], but not necessarily for R’ as we
ask you to illustrate in Exercise 9. Furthermore, although ¢[N] is an ideal in ¢[R], it
may not be an ideal in R’ as verified in Exercise 22.
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Let amap ¢ : R — R’ be a homomorphism of rings. The subring
¢7' 101 = {r e R|$(r) =0}
is the kernel of ¢, denoted by Ker(¢). [ ]

If we forget about the multiplicative part of a ring, we see that the kernel of a ring
homomorphism is the same as the kernel of the underlying group homomorphism. Any
property of a group homomorphism must also hold for a ring homomorphism.

Analogue of Theorem 10.17 Let ¢ : Ry — R, be a ring homomorphism. The
elements a, b € R, are in the same additive coset of Ker(¢) if and only if ¢(a) = ¢(b)¢

Analogue of Corollary 10.19 A ring homomorphism ¢ : Ry — R; is one-to-one if
and only if Ker(¢) = {0}. ¢

The kernel of a group homomorphism ¢ : G; — G, is a normal subgroup of G; and
normality is what is needed in order to construct a factor group from a subgroup. The
situation is similar in rings. We need a subring to be an ideal in order to construct a
factor ring. The following theorem states that in fact the kernel of a ring homomorphism
is an ideal.

Let ¢ : R; — R; be a ring homomorphism. Then Ker(¢) is an ideal in R;.

Since {0} C R, is an ideal in Ry, Ker(¢) = ¢~'[{0}] is an ideal in R, by Property 7 of
Theorem 30.11. S

Fundamental Homomorphism Theorem

To complete our analogy with groups, we give the analogues of Theorems 12.12 and
12.14.

(Analogue of Theorem 12.12) Let N be anideal of aring R. Theny : R — R/N given
by y(x) = x + N is a ring homomorphism with kernel N.

The additive part is done in Theorem 12.12. Turning to the multiplicative question, we
see that
Y =) +N=x+N)y+N) =yxr0). .

(Fundamental Homomorphism Theorem; Analogue of Theorem 12.14) Let ¢ :
R — R’ be a ring homomorphism with kernel N. Then ¢[R] is a ring, and the map
©: R/N — ¢[R] given by p(x + N) = ¢(x) is an isomorphism. If y : R — R/N is the
homomorphism given by y(x) = x + N, then for each x € R, we have ¢(x) = p o y(x).

¢

$(R]

R/IN

30.18 Figure
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Proof This follows at once from Theorems 30.15 and 30.16. Figure 30.18 is the analogue of
Fig. 12.15. .

30.19 Example Example 30.3 shows that nZ is an ideal of Z, so we can form the factor ring Z/nZ.

Example 22.11 shows that ¢ : Z — Z, where ¢(m) is the remainder of m modulo r is a
homomorphism, and we see that Ker(¢) = nZ. Theorem 30.17 then shows that the map
u: Z/nZ — Z, where pu(m + nZ) is the remainder of m modulo n is well defined and
is an isomorphism. A

30.20 Example Continuing Example 30.5, let F be the ring of all functions mapping R into R and let

N be the subset of F consisting of all functions f with f(2) = 0. The set N is an ideal
in F, so F/N is a ring. Furthermore, N is the kernel of the evaluation homomorphism
¢» : F — R defined by ¢»(f) = f(2). Since ¢, maps onto R, F/N is isomorphic with R
by Theorem 30.17. The function 1 : F/N — R given by u(f) = f(2) is an isomorphism.

A

In summary, every ring homomorphism with domain R gives rise to a factor ring
R/N, and every factor ring R/N gives rise to a homomorphism mapping R into R/N. An
ideal in ring theory is analogous to a normal subgroup in the group theory. Both are the
type of substructure needed to form a factor structure.

m EXERCISES 30

Computations

1.

4.

Describe all ring homomorphisms of Z x Z into Z x Z. [Hint: Note that if ¢ is such a homomorphism, then
#((1,0)) = ¢((1,00)¢((1,0)) and $((0, 1)) = $((0, 1))$((0, 1)). Consider also ¢((1,0)(0, 1)).]

. Find all positive integers n such that Z, contains a subring isomorphic to Z.
. Find all ideals N of Z5. In each case compute Zi2/N; that is, find a known ring to which the quotient ring is

isomorphic.
Give addition and multiplication tables for 27 /8Z. Are 27 /87 and Z4 isomorphic rings?

Concepts

In Exercises 5 through 7, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

5.
6.

10.

An isomorphism of a ring R with a ring R’ is a homomorphism ¢ : R — R’ such that Ker(¢) = {0}.

An ideal N of aring R is an additive subgroup of (R, +) such that for all € R and all n € N, we have rn € N
and nr € N.

. The kernel of a homomorphism ¢ mapping a ring R into a ring R’ is {¢(r) = 0/ | r € R}.
. Let F be the ring of all functions mapping R into R and having derivatives of all orders. Differentiation gives a

map § : F — F where §(f(x)) = f/(x). Is § a homomorphism? Why? Give the connection between this exercise
and Example 30.4.

. Give an example of a ring homomorphism ¢ : R — R’ where R has unity 1 and ¢(1) # 0, but ¢(1) is not unity

forR'.

Determine whether each of the following is true or false.

a. The concept of a ring homomorphism is closely connected with the idea of a factor ring.
b. A ring homomorphism ¢ : R — R’ carries ideals of R into ideals of R'.

¢. A ring homomorphism is one-to-one if and only if the kernel is {0}.

d. Qis anideal in R.



11.

12.
13.
14.
15.
16

s
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e. Every ideal in a ring is a subring of the ring.

f. Every subring of every ring is an ideal of the ring.

g. Every quotient ring of every commutative ring is again a commutative ring.

h. The rings Z/4Z and Z4 are isomorphic.

i. Anideal N in a ring R with unity 1 is all of R if and only if 1 € N.

J- The concept of an ideal is to the concept of a ring as the concept of a normal subgroup is to the concept of
a group.

Let R be aring. Observe that {0} and R are both ideals of R. Are the factor rings R/R and R/{0} of real interest?

Why?

Give an example to show that a factor ring of an integral domain may be a field.

Give an example to show that a factor ring of an integral domain may have divisors of 0.

Give an example to show that a factor ring of a ring with divisors of 0 may be an integral domain.

Find a subring of the ring Z x Z that is not an ideal of Z x Z.

A student is asked to prove that a quotient ring of a ring R modulo an ideal N is commutative if and only if

(rs — sr) € N for all r, s € R. The student starts out:

Assume R/N is commutative. Then rs = sr forall r,s € R/N.

a. Why does the instructor reading this expect an incorrect proof?

b. What should the student have written?

¢. Prove the assertion. (Note the “if and only if.”)

Theory

17.

18.
19.

20.

21.

22.

23.

26.
27.

LetR = {a + b+/2| a,b € Z} and let R’ consist of all 2 x 2 matrices of the form [Z ZZ] for a,b € Z. Show

that R is a subring of R and that R’ is a subring of M»(Z). Then show that ¢ : R — R’, where ¢(a + bV/2) =
[Z Zab] is an isomorphism.
Show that each homomorphism from a field to a ring is either one-to-one or maps everything onto 0.

Show that if R, R’, and R” are rings, and if ¢ : R — R’ and ¥ : R" — R” are homomorphisms, then the
composite function Y¢ : R — R” is a homomorphism. (See Exercise 39 of Section 8.)

Let R be a commutative ring with unity of prime characteristic p. Show that the map ¢, : R — R given by
¢p(a) = @’ is a homomorphism (the Frobenius homomorphism).

Let R and R’ be rings and let ¢ : R — R’ be a ring homomorphism such that ¢[R] # {0'}. Show that if R has
unity 1 and R’ has no 0 divisors, then ¢(1) is unity for R'.

Let ¢ : R — R’ be a ring homomorphism and let N be an ideal of R.

a. Show that @[N] is an ideal of ¢[R].

b. Give an example to show that ¢[N] need not be an ideal of R'.

¢. Let N be an ideal either of ¢[R] or of R’. Show that ¢ ~'[N'] is an ideal of R.

Let F be a field, and let S be any subset of F x F x --- x F for n factors. Show that the set Ng of all
f(x1,-++ ,xy) € Flx1,- - ,x,] that have every element (aj,---,a,) of S as a zero (see Exercise 28 of
Section 27) is an ideal in F[xy, - - - , x,]. This is of importance in algebraic geometry.

Show that a factor ring of a field is either the trivial (zero) ring of one element or is isomorphic to the field.
Show that if R is a ring with unity and N is an ideal of R such that N # R, then R/N is a ring with unity.
Let R be a commutative ring and let a € R. Show that I, = {x € R|ax = 0} is an ideal of R.

Show that an intersection of ideals of a ring R is again an ideal of R.

Let R and R’ be rings and let N and N’ be ideals of R and R/, respectively. Let ¢ be a homomorphism of R
into R'. Show that ¢ induces a natural homomorphism ¢, : R/N — R'/N'’ if [N] C N'. (Use Exercise 41 of
Section 12.)
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29.

30.

31

32.

33.

34,

3s.

36.

37.
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Let ¢ be a homomorphism of a ring R with unity onto a nonzero ring R'. Let u be a unit in R. Show that ¢(u)
isaunitin R'.

An element a of a ring R is nilpotent if ” = 0 for some n € Z*. Show that the collection of all nilpotent
elements in a commutative ring R is an ideal, the nilradical of R.

Referring to the definition given in Exercise 30, find the nilradical of the ring Z;, and observe that it is one of
the ideals of Z, found in Exercise 3. What is the nilradical of Z? of Z3,?

Referring to Exercise 30, show that if N is the nilradical of a commutative ring R, then R/N has as nilradical
the trivial ideal {0 + N}.

Let R be a commutative ring and N an ideal of R. Referring to Exercise 30, show that if every element of N is
nilpotent and the nilradical of R/N is R/N, then the nilradical of R is R.

Let R be a commutative ring and N an ideal of R. Show that the set +/N of all a € R, such that a" € N for some
n € Z*, is an ideal of R, the radical of N.

Referring to Exercise 34, show by examples that for proper ideals N of a commutative ring R,
a. +/N need not equal N b. +/N may equal N.

‘What is the relationship of the ideal /N of Exercise 34 to the nilradical of R/N (see Exercise 30)? Word your
answer carefully.

Show that ¢ : C — M,(R) given by

(a+bi) = (_Z Z)

for a, b € R gives an isomorphism of C with the subring ¢[C] of M>(R).

SECTION 31 PRIME AND MAXIMAL IDEALS

Exercises 12 through 14 of the preceding section asked us to provide examples of factor
rings R/N where R and R/N have very different structural properties. We start with some
examples of this situation, and in the process, provide solutions to those exercises.

31.1 Example As was shown in Corollary 23.5, the ring Z,, which is isomorphic to Z/pZ, is a field
for p a prime. Thus a factor ring of an integral domain may be a field. A

31.2 Example The ring Z x Z is not an integral domain, for
0,1)(1,0) = (0,0),

showing that (0, 1) and (1, 0) are O divisors. Let N = {(0, n) | n € Z}. Now N is an ideal
of Z x Z, and (Z x Z)/N is isomorphic to Z under the correspondence [(m,0) + N] <
m, where m € Z. Thus a factor ring of a ring may be an integral domain, even though
the original ring is not. A

31.3 Example The subset N = {0, 3} of Zs is easily seen to be an ideal of Zs, and Ze/N has three
elements, 0 + N,1 + N, and 2 + N. These add and multiply in such a fashion as to
show that Z¢/N ~ Z3 under the correspondence

O+N) <0, (1+N)e 1, 2+N) o 2.

This example shows that if R is not even an integral domain, that is, if R has zero
divisors, it is still possible for R/N to be a field. A

314 Example Note that Z is an integral domain, but Z/6Z ~ Z¢ is not. The preceding examples
showed that a factor ring may have a structure that seems better than the original ring.
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This example indicates that the structure of a factor ring may seem worse than that of
the original ring. A

Every nonzero ring R has at least two ideals, the improper ideal R and the trivial
ideal {0}. For these ideals, the factor rings are R/R, which has only one element, and
R/{0}, which is isomorphic to R. These are uninteresting cases. Just as for a subgroup
of a group, a proper nontrivial ideal of a ring R is an ideal N of R such that N # R and
N #{0}.

While factor rings of rings and integral domains may be of great interest, as the
above examples indicate, Corollary 31.6, which follows our next theorem, shows that a
factor ring of a field is really not useful to us.

If R is a ring with unity, and N is an ideal of R containing a unit, then N = R.

Let N be an ideal of R, and suppose that 4 € N for some unit  in R. Then the condition
rN C N for all r € R implies, if we take r = u~' and u € N, that 1 = u~'uis in N. But
then rN C N for all r € R implies that r1 = risin N forall r € R,soN = R. L

A field contains no proper nontrivial ideals.

Since every nonzero element of a field is a unit, it follows at once from Theorem 31.5
that an ideal of a field F is either {0} or all of F. *

Maximal and Prime Ideals

We now consider the questions of when a factor ring is a field and when it is an inte-
gral domain. In our analogy between groups and rings, we noticed that ideals in rings
correspond to normal subgroups. Corollary 31.6 states that a field contains no proper
nontrivial ideals. In group theory, this corresponds to a group having no proper nontriv-
ial normal subgroups, that is, a simple group. Theorem 13.20 states that a factor group
G/H is simple if and only if H is a maximal normal subgroup of G. The following
definition is analogous to maximal normal subgroups.

A maximal ideal of a ring R is an ideal M different from R such that there is no proper
ideal N of R properly containing M. ]

Let p be a prime positive integer. We know that Z/pZ is isomorphic to Z,. Forgetting
about multiplication for the moment and regarding Z/pZ and Z, as additive groups,
we know that Z, is a simple group, and consequently pZ must be a maximal normal
subgroup of Z by Theorem 13.20. Since Z is an abelian group and every subgroup is
a normal subgroup, we see that pZ is a maximal proper subgroup of Z. Since pZ is an
ideal of the ring Z, it follows that pZ is a maximal ideal of Z. We know that Z/pZ is
isomorphic to the ring Z,, and that Z, is actually a field. Thus Z/pZ is a field. This
illustrates the next theorem. A

(Analogue of Theorem 13.20) Let R be a commutative ring with unity. Then M is a
maximal ideal of R if and only if R/M is a field.

We first assume that M is a maximal ideal in R. Since R is a commutative ring with
unity, so is R/M. Furthermore, since M # R, 0+ M # 1+ M and R/M is a nonzero
ring. Let (a + M) € R/M, with a ¢ M, so that a + M is not the additive identity el-
ement of R/M. Suppose a + M has no multiplicative inverse in R/M. Then the set
(R/M) (a+ M) = {(r + M)(a + M) | (r + M) € R/M} does not contain 1 + M. We eas-
ily see that (R/M)(a + M) is an ideal of R/M. It is nontrivial because a ¢ M, and itis a
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proper ideal because it does not contain 1 + M. By Theorem 30.11,if y : R > R/M is
the canonical homomorphism, then y ~![(R/M)(a + M)] is a proper ideal of R properly
containing M. But this contradicts our assumption that M is a maximal ideal, so a + M
must have a multiplicative inverse in R/M.

Conversely, suppose that R/M is a field. By Theorem 30.11, if N is any ideal of
R such that M C N C R and y is the canonical homomorphism of R onto R/M, then
y[N] is an ideal of R/M with {(0 + M)} C y[N] C R/M. But this is contrary to Corol-
lary 31.6, which states that the field R/M contains no proper nontrivial ideals. Hence if
R/M is a field, then M is maximal. L 4

Since Z/nZ is isomorphic to Z, and Z, is a field if and only if r is a prime, we see that
the maximal ideals of Z are precisely the ideals pZ for prime positive integers p. A

A commutative ring with unity is a field if and only if it has no proper nontrivial ideals.

Corollary 31.6 shows that a field has no proper nontrivial ideals.
Conversely, if a commutative ring R with unity has no proper nontrivial ideals, then
{0} is a maximal ideal and R/{0}, which is isomorphic to R, is a field by Theorem 31.9.
*

‘We now turn to the question of characterizing, for a commutative ring R with unity,
the ideals N 7 R such that R/N is an integral domain. The answer here is rather obvi-
ous. The factor ring R/N will be an integral domain if and only if (a + N)(b+ N) =N
implies that either

a+N=N or b+N=N.

This is exactly the statement that R/N has no divisors of 0, since the coset N plays
the role of 0 in R/N. Looking at representatives, we see that this condition amounts to
saying that ab € N implies that eithera € Norb € N.

All ideals of Z are of the form nZ. For n = 0, we have nZ = {0}, and Z/{0} ~ Z, which
is an integral domain. For n > 0, we have Z/nZ ~ Z, and Z, is an integral domain
if and only if 7 is a prime. Thus the nonzero ideals nZ such that Z/nZ is an integral
domain are of the form pZ, where p is a prime. Of course, Z/pZ is actually a field, so
that pZ is a maximal ideal of Z. Note that for a product rs of integers to be in pZ, the
prime p must divide either r or s. The role of prime integers in this example makes the
use of the word prime in the next definition more reasonable. A

An ideal N # R in a commutative ring R is a prime ideal if ab € N implies that either
aeNorbeNfora,beR. [ ]

Note that {0} is a prime ideal in Z, and indeed, in any integral domain.

Note that Z x {0} is a prime ideal of Z x Z, for if (a, b)(c,d) € Z x {0}, then we must
have bd = 0 in Z. This implies that either b = 0 so (a,b) € Z x {0} ord = 0o (c,d) €
Z x {0}. Note that (Z x Z)/(Z x {0}) is isomorphic to Z, which is an integral domain.

A

Our remarks preceding Example 31.12 constitute a proof of the following theorem,
which is illustrated by Example 31.14.

Let R be a commutative ring with unity, and let N # R be an ideal in R. Then R/N is an
integral domain if and only if N is a prime ideal in R.
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Every maximal ideal in a commutative ring R with unity is a prime ideal.
If M is maximal in R, then R/M is a field, hence an integral domain, and therefore M is
a prime ideal by Theorem 31.15. L 2

The material that has just been presented regarding maximal and prime ideals is
very important and we shall be using it quite a lot. We should keep the main ideas well
in mind. We must know and understand the definitions of maximal and prime ideals and
must remember the following facts that we have demonstrated.

For a commutative ring R with unity:
1. Anideal M of R is maximal if and only if R/M is a field.

2. Anideal N of R is prime if and only if R/N is an integral domain.
3. Every maximal ideal of R is a prime ideal.

Prime Fields

‘We now proceed to show that the rings Z and Z, form foundations upon which all rings
with unity rest, and that Q and Z, perform a similar service for all fields. Let R be any
ring with unity 1. Recall that by n-1 we mean 1+ 1+ ---+ 1 for n summands for
n>0,and (—1) 4+ (—1) + - - - 4+ (—1) for |n| summands for n < 0, while n- 1 = 0 for
n=0.
If R is a ring with unity 1, then the map ¢ : Z — R given by

dp(n)=n-1

for n € Z is a homomorphism of Z into R.
Observe that

dn+m)=@n+m-1=@-1)+(m-1)=dn) + ¢p(m).
The distributive laws in R show that

A+14+DA+1+- -+ D=0 +1+---+1).

n summands m summands nm summands

Thus (n - 1)(m - 1) = (nm) - 1 for n,m > 0. Similar arguments with the distributive
laws show that for all n,m € Z, we have

(n-1)m-1)=(nm)- 1.
Thus
¢(nm) = (nm) - 1 = (n- 1)(m - 1) = $(n)¢(m). *

Let R be a ring with unity. If R has characteristic n > 1, then R contains a subring
isomorphic to Z,. If R has characteristic 0, then R contains a subring isomorphic to Z.

The map ¢ : Z — R given by ¢(m) =m - 1 for m € Z is a homomorphism by Theo-
rem 31.17. The kernel must be an ideal in Z. All ideals in Z are of the form sZ for some
s € Z. By Theorem 23.14 we see that if R has characteristic n > 0, then the kernel of ¢
is nZ. Then the image ¢[Z] < R is isomorphic to Z/nZ =~ Z,. If the characteristic of R
is 0, then m - 1 # O for all m # 0, so the kernel of ¢ is {0}. Thus, the image ¢[Z] < R
is isomorphic to Z. *
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31.24 Theorem

Proof

31.25 Theorem

Constructing Rings and Fields

A field F is either of prime characteristic p and contains a subfield isomorphic to Z, or
of characteristic 0 and contains a subfield isomorphic to Q.

If the characteristic of F is not 0, the above corollary shows that F contains a subring
isomorphic to Z,. Then » must be a prime p, or F would have 0 divisors. If F is of
characteristic 0, then F must contain a subring isomorphic to Z. In this case Corollaries
26.9 and 26.10 show that F must contain a field of quotients of this subring and that this
field of quotients must be isomorphic to Q. *

Thus every field contains either a subfield isomorphic to Z, for some prime p or a
subfield isomorphic to Q. These fields Z, and Q are the fundamental building blocks on
which all fields rest.

The fields Z, and Q are prime fields. u

Ideal Structure in F[x]

Throughout the rest of this section, we assume that F is a field. We give the next defi-
nition for a general commutative ring R with unity, although we are only interested in
the case R = F[x]. Note that for a commutative ring R with unity and a € R, the set
{ra|r € R} is an ideal in R that contains the element a.

If R is a commutative ring with unity and a € R, the ideal {ra | r € R} of all multiples
of a is the principal ideal generated by a and is denoted by (a). An ideal N of R is a
principal ideal if N = (a) for some a € R. n

Every ideal of the ring Z is of the form nZ, which is generated by n, so every ideal of Z
is a principal ideal. A

The principal ideal (x) in F[x] consists of all polynomials in F[x] having zero constant
term. A

The next theorem is another simple but very important application of the divi-
sion algorithm for F[x]. (See Theorem 28.2.) The proof of this theorem is to the di-
vision algorithm in F[x] as the proof that a subgroup of a cyclic group is cyclic is to the
division algorithm in Z.

If F is a field, every ideal in F[x] is principal.

Let N be an ideal of F[x]. If N = {0}, then N = (0). Suppose that N 7 {0}, and let g(x)
be a nonzero element of N of minimal degree. If the degree of g(x) is 0, then g(x) € F
and is a unit, so N = F[x] = (1) by Theorem 31.5, so N is principal. If the degree of
g(x) is >1, let f(x) be any element of N. Then by Theorem 28.2, f(x) = g(x)q(x) + r(x),
where r(x) = 0 or (degree r(x)) < (degree g(x)). Now f(x) € N and g(x) € N imply that
f(x) — g(x)g(x) = r(x) is in N by definition of an ideal. Since g(x) is a nonzero element
of minimal degree in N, we must have r(x) = 0. Thus f(x) = g(x)g(x) and N = (g(x)).

*

We can now characterize the maximal ideals of F[x]. This is a crucial step in achiev-
ing our basic goal: to show that any nonconstant polynomial f(x) in F[x] has a zero in
some field E containing F.

An ideal (p(x)) # {0} of F[x] is maximal if and only if p(x) is irreducible over F.
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Suppose that (p(x)) # {0} is a maximal ideal of F[x]. Then (p(x)) # F[x], so p(x) € F.
Let p(x) = f(x)g(x) be a factorization of p(x) in F[x]. Since (p(x)) is a maximal ideal and
hence also a prime ideal, (f(x)g(x)) € (p(x)) implies that f(x) € (p(x)) or g(x) € (p(x));
that is, either f(x) or g(x) has p(x) as a factor. But then we can’t have the degrees of both
f(x) and g(x) less than the degree of p(x). This shows that p(x) is irreducible over F.
Conversely, if p(x) is irreducible over F, suppose that N is an ideal such that
(p(x)) € N C Flx]. Now N is a principal ideal by Theorem 31.24, so N = (g(x)) for
some g(x) € N. Then p(x) € N implies that p(x) = g(x)g(x) for some g(x) € F[x]. But
p(x) is irreducible, which implies that either g(x) or g(x) is of degree 0. If g(x) is of de-
gree 0, that is, a nonzero constant in F, then g(x) is a unit in F[x], so (g(x)) = N = F[x].
If g(x) is of degree 0, then g(x) = c, where ¢ € F, and g(x) = (1/c)p(x) is in (p(x)), so
N = (p(x)). Thus (p(x)) C N C FI[x] is impossible, so (p(x)) is maximal. *

Example 28.10 shows that x> 4 3x + 2 is irreducible in Zs[x], so Zs[x]/ (x> 4+ 3x + 2)
is a field. Similarly, Theorem 27.11 shows that x> — 2 is irreducible in Q[x], so Q[x]/
(x* — 2) is a field. We shall examine such fields in more detail later. A

Application to Unique Factorization in F[x]

In Section 28, we stated without proof Theorem 31.27, which follows. (See Theo-
rem 28.19.) Assuming this theorem, we proved in Section 28 that factorization of poly-
nomials in F[x] into irreducible polynomials is unique, except for order of factors and
units in F. We delayed the proof of Theorem 31.27 until now since the machinery we
have developed enables us to give such a simple proof. This proof fills the gap in our
proof of unique factorization in F[x].

Let p(x) be an irreducible polynomial in F[x]. If p(x) divides r(x)s(x) for r(x),s(x) €
FI[x], then either p(x) divides r(x) or p(x) divides s(x).

Suppose p(x) divides r(x)s(x). Then r(x)s(x) € (p(x)), which is maximal by Theo-
rem 31.25. Therefore, (p(x)) is a prime ideal by Corollary 31.16. Hence r(x)s(x) € (p(x))
implies that either r(x) € (p(x)), giving p(x) divides r(x), or that s(x) € (p(x)), giving
p(x) divides s(x). *

A Preview of Our Basic Goal

We close this section with an outline of the demonstration in Section 39 of our basic
goal. We have all the ideas for the proof at hand now; perhaps you can fill in the details
from this outline.

Basic goal: Let F be a field and let f(x) be a nonconstant polynomial in F[x]. Show
that there exists a field E containing F and containing a zero « of f(x).

Outline of the Proof

1. Let p(x) be an irreducible factor of f(x) in F[x].

2. Let E be the field F[x]/(p(x)). (See Theorems 31.25 and 31.9.)

3. Show that no two different elements of F are in the same coset of F[x]/(p(x)),
and deduce that we may consider F to be (isomorphic to) a subfield of E.

4. Let o be the coset x + (p(x)) in E. Show that for the evaluation
homomorphism ¢, : F[x] — E, we have ¢,(f(x)) = 0. That is, « is a zero of
f(x)in E.
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An example of a field constructed according to this outline is given in Section 39.
There, we give addition and multiplication tables for the field Z,[x]/(x*> + x + 1). We
show there that this field has just four elements, the cosets

0+ (2 4+x+1), 1+@@+x+1), x4+ @+x+1),

d
o C+D+ @ +x+1).

We rename these four cosets 0, 1, @, and o + 1 respectively, and obtain Tables 39.21
and 39.22 for addition and multiplication in this 4-element field. To see how these tables
are constructed, remember that we are in a field of characteristic 2, so that o + o =
a(1 + 1) = @0 = 0. Remember also that o is a zero of x> + x+ 1, sothato® + ¢ + 1 =
0 and consequently o? = —a — 1 = o + 1.

m EXERCISES 31

Computations

1

. Find all prime ideals and all maximal ideals of Z5.

o 0N AN AWN

Find all prime ideals and all maximal ideals of Zg.

. Find all prime ideals and all maximal ideals of Zy x Z>.
. Find all prime ideals and all maximal ideals of Z; x Zs.
. Find all ¢ € Zj3 such that Z3[x]/ (x> + c) is a field.

. Find all ¢ € Zj3 such that Z3[x]/ (x> + x% + ¢) is a field.
. Find all ¢ € Zj3 such that Z3[x]/ (x> + cx? + 1) is a field.
. Find all ¢ € Zs such that Zs[x]/ (2 +x +c) is a field.

. Find all ¢ € Zs such that Zs[x]/ (x2 + cx + 1) is a field.

Concepts

In Exercises 10 through 13, correct the definition of the italicized term without reference to the text, if correction
is needed, so that it is in a form acceptable for publication.

10.
11.
12.
13.

14.

15.

A maximal ideal of a ring R is an ideal that is not contained in any other ideal of R.

A prime ideal of a commutative ring R is an ideal of the form pR = {pr | r € R} for some prime p.
A prime field is a field that has no proper subfields.

A principal ideal of a commutative ring with unity is an ideal N with the property that there exists a € N such
that N is the smallest ideal that contains a.

Determine whether each of the following is true or false.

a. Every prime ideal of every commutative ring with unity is a maximal ideal.

b. Every maximal ideal of every commutative ring with unity is a prime ideal.

¢. Qis its own prime subfield.
d. The prime subfield of C is R.

e. Every field contains a subfield isomorphic to a prime field.

f. A ring with zero divisors may contain one of the prime fields as a subring.

g. Every field of characteristic zero contains a subfield isomorphic to Q.
h. Let F be a field. Since F[x] has no divisors of 0, every ideal of F[x] is a prime ideal.

i. Let F be a field. Every ideal of F[x] is a principal ideal.

j- Let F be a field. Every principal ideal of F[x] is a maximal ideal.
Find a maximal ideal of Z x Z.
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17.
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Find a prime ideal of Z X Z that is not maximal.
Find a nontrivial proper ideal of Z x Z that is not prime.

18. Is Q[x]/(x?> — 5x + 6) a field? Why?

19. Is Q[x]/ (x> — 6x + 6) a field? Why?

Proof Synopsis

20. Give a one- or two-sentence synopsis of “only if” part of Theorem 31.9.

21.
22.
23.

Give a one- or two-sentence synopsis of “if”” part of Theorem 31.9.
Give a one- or two-sentence synopsis of Theorem 31.24.
Give a one- or two-sentence synopsis of the “only if” part of Theorem 31.25.

Theory

24.

25.
26.
27.

28

29.

30

31

32
33.

3s.

Give an example of an ideal in Q[x, y] that is not a principal ideal. Conclude that if R is an integral domain with
the property that every ideal in R is principal, it does not follow that every ideal in R[x] is a principal ideal.

Prove that if R is a commutative ring with unity and a € R, then (@) = {ra|r € R} is an ideal in R.
Let R be a finite commutative ring with unity. Show that every prime ideal in R is a maximal ideal.

Corollary 31.18 tells us that every ring with unity contains a subring isomorphic to either Z or some Z,,. Is it
possible that a ring with unity may simultaneously contain two subrings isomorphic to Z, and Z,, for n # m?
If it is possible, give an example. If it is impossible, prove it.

Continuing Exercise 27, is it possible that a ring with unity may simultaneously contain two subrings isomor-
phic to the fields Z, and Z, for two different primes p and ¢? Give an example or prove it is impossible.
Following the idea of Exercise 28, is it possible for an integral domain to contain two subrings isomorphic to
Zp and Z,, for p # q and p and g both prime? Give reasons or an illustration.

Prove directly from the definitions of maximal and prime ideals that every maximal ideal of a commutative ring
R with unity is a prime ideal. [Hint: Suppose M is maximal in R, ab € M, and a ¢ M. Argue that the smallest
ideal {ra + m|r € R,m € M} containing a and M must contain 1. Express 1 as ra + m and multiply by b.]

Show that N is a maximal ideal in a ring R if and only if R/N is a simple ring, that is, it is nontrivial and has
no proper nontrivial ideals. (Compare with Theorem 13.20.)

Prove that if F is a field, every proper nontrivial prime ideal of F[x] is maximal.
Let F be a field and f(x), g(x) € F[x]. Show that f(x) divides g(x) if and only if g(x) € {f(x)).
Let F be a field and let f(x), g(x) € F[x]. Show that

N = {r(x) f(x) + s(x)g(x) | r(x), s(x) € F[x]}

is an ideal of F[x]. Show that if f(x) and g(x) have different degrees and N # F[x], then f(x) and g(x) cannot
both be irreducible over F.

Use Theorem 31.24 to prove the equivalence of these two theorems:

Fundamental Theorem of Algebra: Every nonconstant polynomial in C[x] has a zero in C.

Nullstellensatz for C[x]: Let fi(x),- - - ,fr(x) € C[x] and suppose that every a € C that is a zero of all r of
these polynomials is also a zero of a polynomial g(x) in C[x]. Then some power of g(x) is in the smallest ideal
of C[x] that contains the r polynomials fi(x), - - - ,fr(x).

There is a sort of arithmetic of ideals in a ring. The next three exercises define sum, product, and quotient of ideals.

36.

If A and B are ideals of a ring R, the sum A + B of A and B is defined by

A+B={a+blacAbecB).

a. Show that A + B is an ideal. b. Show that A CA+Band BC A+ B.
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37.

38.

39.

40.

Part VI Constructing Rings and Fields

Let A and B be ideals of a ring R. The product AB of A and B is defined by

n
AB = {Za;bila,- €A,bieB,n eZ*}.

i=1

a. Show that AB is an ideal in R. b. Show that AB C (AN B).
Let A and B be ideals of a commutative ring R. The quotient A : B of A by B is defined by

A:B={reR|rbeAforallb e B}.

Show that A : B is an ideal of R.
Show that for a field F, the set S of all matrices of the form

G )

for a,b € F is a right ideal but not a left ideal of M>(F). That is, show that S is a subring closed under
multiplication on the right by any element of M, (F), but is not closed under left multiplication.

Show that the matrix ring M»(Z,) is a simple ring; that is, M»(Z,) has no proper nontrivial ideals.

SECTION 32

"TNONCOMMUTATIVE EXAMPLES

Thus far, the only example we have presented of a ring that is not commutative is the ring
M, (F) of all n x n matrices with entries in a field F. We shall do almost nothing with
noncommutative rings and strictly skew fields. To show that there are other important
noncommutative rings occurring very naturally in algebra, we give several examples of
such rings.

Rings of Endomorphisms

Let A be any abelian group. A homomorphism of A into itself is an endomorphism of
A. Let the set of all endomorphisms of A be End(A). Since the composition of two ho-
momorphisms of A into itself is again such a homomorphism, we define multiplication
on End(A) by function composition, and thus multiplication is associative.
To define addition, for ¢, ¥y € End(A), we have to describe the value of (¢ + ¥) on
each a € A. Define
(@ +¥)a) =@+ ¥(a).
Since
@+¥)a+b)=¢a+b)+y¥@+b)
=[¢@) + ¢®)] + [¥(a) + ¥ ()]
=[¢@ + ¥ (@] + [¢() + ¥ ()]
=(@+ V)@ + @+ ¥)0b)
we see that ¢ + i is again in End(A).
Since A is commutative, we have

(@ +¥)@) = ¢(a) + ¥(a) = ¥(a) + ¢(a) = (¥ + $)(a)

¥ This section is not used in the remainder of the text.
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forall a € A, so ¢ + ¥ = ¢ + ¢ and addition in End(A) is commutative. The associa-
tivity of addition follows from
[¢ + (¥ +6)l(@) = ¢(a) + [(¥ + 6)(a)]
= ¢(a) + [¥(a) + 0(a)]
= [¢(@) + ¥ (@)] + 0(a)
=@+ ¥)a)+6(
=@+ ¥)+0)a).
If e is the additive identity of A, then the homomorphism 0 defined by
O(@) =e
for a € A is an additive identity in End(A). Finally, for
¢ € End(4),
—¢ defined by
(=¢)a) = —¢(a)
is in End(A), since
(—=¢)a+b) = —¢(a+b) = —[¢(a) + ¢(b)]
= —¢(a) — ¢(b) = (—P)@) + (—)(b),
and ¢ + (—¢) = 0. Thus (End(A), +) is an abelian group.

Note that we have not yet used the fact that our functions are homomorphisms
except to show that ¢ + ¢ and —¢ are again homomorphisms. Thus the set A4 of all
Junctions from A into A is an abelian group under exactly the same definition of addition,
and, of course, function composition again gives a nice associative multiplication in A4.
However, we do need the fact that these functions in End(A) are homomorphisms now to
prove the left distributive law in End(A). Except for this left distributive law, (A4, +, -)
satisfies all the axioms for a ring. Let ¢, ¢, and 6 be in End(A), and let a € A. Then

@@ + ¥))a) = 0((¢ + ¥)(@) = 6(p(a) + ¥(a)).
Since 6 is a homomorphism,
0(¢(a) + ¥ (a)) = 6(¢(a)) + 6(¥(a))
= 6¢)a) + (0V¥)(@
= (6¢ + 0Y)a).
Thus (¢ + ¥) = 8¢ + 8¢ The right distributive law causes no trouble, even in A4,
and follows from
(¥ +6)p)(a) = (¥ + 0)(@(a)) = ¥ ($(a)) + 6(d(a))
= (Y ¢)a) + 0¢)a) = (V¢ + 6¢)(a).

Thus we have proved the following theorem.

The set End(A) of all endomorphisms of an abelian group A forms a ring under homo-
morphism addition and homomorphism multiplication (function composition).

Again, to show relevance to this section, we should give an example showing that
End(A) need not be commutative. Since function composition is in general not commu-
tative, this seems reasonable to expect. However, End(A) may be commutative in some
cases. Indeed, Exercise 15 asks us to show that End({(Z, +)) is commutative.
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Consider the abelian group (Z x Z, +) discussed in Section 9. It is straightforward to
verify that two elements of End({Z x Z, +)) are ¢ and v defined by
¢((m,m)=(m+n0 and  ¥((m,n)=(0,n).
Note that ¢ maps everything onto the first factor of Z x Z, and ¥ collapses the first
factor. Thus
WY @)(m,n) = Y(m+n,0) = (0,0)
while
(@Y)(m,n) = ¢0,n) = (n,0).
Hence ¢y # ¥o. A

Let F be a field of characteristic zero, and let (F[x], +) be the additive group of the ring
F[x] of polynomials with coefficients in F. For this example, let us denote this additive
group by F[x], to simplify this notation. We can consider End(F[x]). One element of
End(F[x]) acts on each polynomial in F[x] by multiplying it by x. Let this endomor-
phism be X, so

X(ap + aix + ap® + - + apx") = apx + a1 + ax® + -+ - + @

Another element of End(F[x]) is formal differentiation with respect to x. (The familiar
formula “the derivation of a sum is the sum of the derivatives” guarantees that differen-
tiation is an endomorphism of F[x].) Let Y be this endomorphism, so

Y(ag+aix+ax® + -+ and") = a1 + 2ax + - - + napx".

Exercise 17 asks us to show that YX — XY = 1, where 1 is unity (the identity map) in
End(F[x]). Thus XY # YX. Multiplication of polynomials in F[x] by any element of F
also gives an element of End (F[x]). The subring of End(F[x]) generated by X and Y
and multiplications by elements of F is the Weyl algebra and is important in quantum
mechanics. A

Group Rings and Group Algebras

Let G = {g; | i € I} be any group written multiplicatively and let R be any commutative
ring with nonzero unity. Let RG be the set of all formal sums.

Z aigi

iel
for a; € R and g; € G, where all but a finite number of the a; are 0. Define the sum of
two elements of RG by

(Z aigi) + (Z bigi) = Z(ai + b)gi.
iel iel iel
Observe that (a; + b;) = 0 except for a finite number of indices i, s0 X;c/(a; + b;)g; is
again in RG. It is immediate that (RG,+) is an abelian group with additive identity
Zier0g;.

Multiplication of two elements of RG is defined by the use of the multiplications in
G and R as follows:

Naively, we formally distribute the sum X;¢;a;g; over the sum X;¢;b;g; and rename a
term a;g;bigx by a;big; where gjg; = g; in G. Since a; and b; are 0 for all but a finite
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number of i, the sum X, _,.a;b; contains only a finite number of nonzero summands
ajb; € R and may thus be viewed as an element of R. Again, at most a finite number of
such sums X, —,.a;b; are nonzero. Thus multiplication is closed on RG.

The distributive laws follow at once from the definition of addition and the
formal way we used distributivity to define multiplication. For the associativity of
multiplication

(S5l (5[5 5 )

iel iel 8j8k=8i

=Z( » a;,b,q)g,-

iel 8n8j8k=8i

[2(Z)(5)

~[(Zow) (o)) (50

Thus we have proved the following theorem.

If G is any group written multiplicatively and R is a commutative ring with nonzero
unity, then (RG, +, -) is a ring.

Corresponding to each g € G, we have an element 1g in RG. If we identify (rename)
1g with g, we see that (RG, -) can be considered to contain G naturally as a multiplicative
subsystem. Thus, if G is not abelian, RG is not a commutative ring.

The ring RG defined above is the group ring of G over R. If F is a field, then FG is the
group algebra of G over F. [ ]

Let us give the addition and multiplication tables for the group algebra Z,G, where
G = {e, a} is cyclic of order 2. The elements of Z,G are

Oe+0a, 0Oe+la, le+0a, and le+ la.
If we denote these elements in the obvious, natural way by

0, a, e, and e+a,

32.7 Table 32.8 Table
+ 0 a e e+a 0 e e+a
0 0 a e e+a 0 0 0 0 0
a a 0 et+a e a 0 e a e+a
e e e+a 0 a e 0 a e e+a
e+a|e+a e a 0 e+a 0 et+a|e+ta 0

respectively, we get Tables 32.7 and 32.8. For example, to see that (e + a)(e + a) = 0,
we have

(le+ 1la)(le + 1a) = (1 + e + (1 4+ 1)a = Oe + Oa.

This example shows that a group algebra may have 0 divisors. Indeed, this is usually
the case. A
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The Quaternions

We have not yet given an example of a noncommutative division ring. The quaternions

Part VI  Constructing Rings and Fields

of Hamilton are the standard example of a strictly skew field; let us describe them.

m HISTORICAL NOTE

Sir William Rowan Hamilton (1805-1865) dis-
covered quaternions in 1843 while he was
searching for a way to multiply number triplets
(vectors in R3). Six years earlier he had devel-
oped the complex numbers abstractly as pairs (a, b)
of real numbers with addition (a,b) + (@' + b') =
(a+d,b+b) and multiplication (a,b)(d'd’) =
(ad’ — bb',ab’ + a'b); he was then looking for an
analogous multiplication for 3-vectors that was
distributive and such that the length of the product
vector was the product of the lengths of the fac-
tors. After many unsuccessful attempts to multiply
vectors of the form a + bi + ¢j (where 1, i, j are
mutually perpendicular), he realized while walking

along the Royal Canal in Dublin on October 16,
1843, that he needed a new “imaginary symbol”
k to be perpendicular to the other three elements.
He could not “resist the impulse ...to cut with a
knife on a stone of Brougham Bridge” the fun-
damental defining formulas for multiplying these
quaternions.

The quaternions were the first known exam-
ple of a strictly skew field. Though many others
were subsequently discovered, it was eventually
noted that none were finite. In 1909 Joseph Henry
Maclagan Wedderburn (1882-1948), then a pre-
ceptor at Princeton University, gave the first proof
of Theorem 32.10.

Let the set H, for Hamilton, be R x R x R x R. Now (R x R x R x R, +) is a
group under addition by components, the direct product of R under addition with itself
four times. This gives the operation of addition on H. Let us rename certain elements of
H. We shall let

1=(1,0,0,0), i=1(0,1,0,0),
j=(0,0,1,0), and k=(0,0,0,1).
We furthermore agree to let
a; =(a1,0,0,0), azi =(0,a,,0,0),
a3j = (0,0,a3,0) and a4k = (0,0,0,as).
In view of our definition of addition, we then have
(a1,a2,a3,a4) = a1 + azi + asj + ask.
Thus
(a1 + axi + azj + ask) + (b1 + bai + baj + bak)
= (a1 + b1) + (a2 + bp)i + (a3 + b3)j + (a4 + ba)k.

We now give Hamilton’s fundamental formulas for multiplication in H, We start by
defining

la=al=a for a€eH,
P=f=k=-1,
and

=k k=i, ki=j, ji=—k Kki=—i, and ik=—j.
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Note the similarity with the so-called cross product of vectors. These formulas are easy
to remember if we think of the sequence

ij. ki), k.
The product from left to right of two adjacent elements is the next one to the right. The
product from right to left of two adjacent elements is the negative of the next one to the

left. We then define a product to be what it must be to make the distributive laws hold,
namely,

(a1 + azi + ayj + ask)(by + bri + byj + bsk)
= (a1by — a2by — asbs — asby) + (a1b + axby + azbs — ashs)i
+ (a1b3 — azbs + azby + asby)j
+ (a1bs + azbs — azby + asb)k.

Exercise 19 shows that the quaternions are isomorphic to a subring of M>(C), so
multiplication is associative. Since ij = k and ji = —k, we see that multiplication is not
commutative, so H is definitely not a field. Turning to the existence of multiplicative
inverses, let a = a) + azi + a3j + ask, with not all g; = 0. Computation shows that

(a1 + azi + asj + ask)a) — azi — azj — ask) = a> + @’ +af +al.
If we let

la? =a’+a’+al+a? and  a=a; —ai—ayj— aik,

a _a a ; as \. a k
a? = Ja? ~ \iaP la? )~ \iaP

is a multiplicative inverse for a. We have demonstrated the following theorem.

we see that

32.9 Theorem The quaternions H form a strictly skew field under addition and multiplication. ¢
Note that G = {£1, +i, +j, +k} is a group of order 8 under quaternion multiplica-
tion. This group is generated by i and j, where
#=1, 2=2& and ji=#dj

The group G is not cyclic. Recall that Corollary 28.7 states that if F is a field and H is
a finite subgroup of the multiplicative group F*, then H is cyclic. This example shows
that Corollary 28.7 cannot be generalized to skew fields.

There are no finite strictly skew fields. This is the content of a famous theorem of
‘Wedderburn, which we state without proof.

32.10 Theorem (Wedderburn’s Theorem) Every finite division ring is a field.
Proof See Artin, Nesbitt, and Thrall [24] for a proof of Wedderburn’s theorem. *

m EXERCISES 32

Computations

In Exercises 1 through 3, let G = {e, a, b} be a cyclic group of order 3 with identity element e. Write the element
in the group algebra ZsG in the form

re + sa + tb for r,s,t € Zs.
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1. (2 + 3a + 0b) + (4e + 2a + 3b) 2. (2 + 3a + Ob)(4e + 2a + 3b) 3. (3¢ +3a+ 3b)*
In Exercises 4 through 7, write the element of H in the form a; + ayi + azj + ask for a; € R.
4, (i+3)@d+2—k 5. 2Pk
6. G+t 7. [+ 3D + 3] 7!
8. Referring to the dihedral group D3 = {1, p, p2, it, up, 1p?} as defined in Section 4, compute the product
O+ 1o +0(0%) + O + 1(1p) + 1o (1e + 10 + 0(0%) + 1 + 0(up) + 1(1p”))
in the group ring Z,Ds.
9. Find the center of the group (H*, -), where H* is the set of nonzero quaternions.
Concepts
10. Find two subsets of H different from C and from each other, each of which is a field isomorphic to C under
the induced addition and multiplication from H.
11. Determine whether each of the following is true or false.
a. M,(F) has no divisors of 0 for any n and any field F.
b. Every nonzero element of M»(Z,) is a unit.
¢. End(A) is always a ring with unity 7 0 for every abelian group A.
d. End(A) is never a ring with unity # O for any abelian group A.
e. The subset Iso(A) of End(A), consisting of the isomorphisms of A onto A, forms a subring of End(A) for
every abelian group A.
f. R(Z, +) is isomorphic to (Z, +, -} for every commutative ring R with unity.
g. The group ring RG of an abelian group G is a commutative ring for any commutative ring R with unity.
h. The quaternions are a field.
i. (H*,-) is a group where H* is the set of nonzero quaternions.
j- No subring of H is a field.
12. Show each of the following by giving an example.
a. A polynomial of degree n with coefficients in a strictly skew field may have more than n zeros in the skew
field.
b. A finite multiplicative subgroup of a strictly skew field need not be cyclic.
Theory
13. Let ¢ be the element of End({(Z x Z, +)) given in Example 32.2. That example showed that ¢ is a right divisor
of 0. Show that ¢ is also a left divisor of 0.
14. Show that M,(F) has at least six units for every field F. Exhibit these units. [Hint: F has at least two elements,
Oand 1.]
15. Show that End ({Z, +)) is naturally isomorphic to (Z, +,-) and that End({Z,, +)) is naturally isomorphic to
(Zn,+,-).
16. Show that End({Z; x Zj, +)) is not isomorphic to (Zy x Zp,+,-).
17. Referring to Example 32.3, show that YX — XY = 1.
18. If G = {e}, the group of one element, show that RG is isomorphic to R for any ring R.
19. There exists a matrix K € M»(C) such that ¢ : H — M,(C) defined by

. R 1 0 01 0 i
¢(a+bt+q+dk)=a[0 1]+b[_1 O]+c[i 0]+dK,

for all a, b, c,d € R, gives an isomorphism of H with ¢[H].
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a. Find the matrix K.

b. What 8 equations should you check to see that ¢ really is a homomorphism?

¢. What other thing should you check to show that ¢ gives an isomorphism of H with ¢[H]?
20. Let R be a ring with unity, leta € R, and let A, : R — R be given by

ra(x) = ax
forx € R.

a. Show that A, is an endomorphism of (R, +).
b. Show that R = {A, | a € R} is a subring of End((R, +)).
¢. Prove the analogue of Cayley’s theorem for R by showing that R’ of (b) is isomorphic to R.
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VECTOR SPACES

The notions of a vector space, scalars, independent vectors, and bases may be familiar.
In this section, we present these ideas where the scalars may be elements of any field.
We use Greek letters like o and B for vectors. In our application, the vectors will be
elements of a field E containing field F. The proofs are all identical with those often
given in a first course in linear algebra.

Definition and Elementary Properties

The topic of vector spaces is the cornerstone of linear algebra. Since linear algebra is not
the subject for study in this text, our treatment of vector spaces will be brief, designed
to develop only the concepts of linear independence and dimension that we need for our
development of field theory.

The terms vector and scalar are probably familiar from calculus. Here we allow
scalars to be elements of any field, not just the real numbers, and develop the theory by
axioms just as for the other algebraic structures we have studied.

Let F be a field. A vector space over F (or F-vector space) consists of an abelian group
V under addition together with an operation of scalar multiplication of each element of
V by each element of F on the left, such that for all a,b € F and «, 8 € V the following
conditions are satisfied:

A. av e V.

Z. a(ba) = (ab)a.

Z. (a+ b = (ac) + (ba).
. ale + B) = (ac) + (ah).
Z. la = a.

The elements of V are vectors and the elements of F are scalars. When only one field
F is under discussion, we drop the reference to F and refer to a vector space. ]

Note that scalar multiplication for a vector space is not a binary operation on one
set in the sense we defined it in Section 1. It associates an element aa of V with each

267
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ordered pair (a, ), consisting of an element a of F and an element « of V. Thus scalar
multiplication is a function mapping F x V into V. Both the additive identity for V, the
0-vector, and the additive identity for F, the 0-scalar, will be denoted by 0.

Consider the abelian group (R”, +) = R x R x - - - x R for n factors, which consists of
ordered n-tuples under addition by components. Define scalar multiplication for scalars

ro = (ray,- - ,ra,)

,a,) € R". With these operations, R” becomes a vector space
over R. The axioms for a vector space are readily checked. In particular, R = R x R as
a vector space over R can be viewed as all “vectors whose starting points are the origin
of the Euclidean plane” in the sense often studied in calculus courses. A

For any field F, F[x] can be viewed as a vector space over F, where addition of vectors
is ordinary addition of polynomials in F[x] and scalar multiplication acr of an element
of F[x] by an element of F is ordinary multiplication in F[x]. The axioms Z{ through
Z: for a vector space then follow immediately from the fact that F[x] is a ring with
unity. A

Part VII Commutative Algebra
33.2 Example
in R by
forre Rando = (ay,- -
33.3 Example
33.4 Example

Let F be a subfield of the field E. Then E can be regarded as a vector space over F,
where addition of vectors is the usual addition in E and scalar multiplication ac is the
usual field multiplication in E with a € F and o € E. The axioms follow at once from
the field axioms for E. Here our field of scalars is actually a subset of our space of
vectors. It is this example that is the important one for us. A

We are assuming nothing about vector spaces from previous work and shall prove
everything we need from the definition, even though the results may be familiar from
calculus.

m HISTORICAL NOTE

he ideas behind the abstract notion of a vec-

tor space occurred in many concrete examples
during the nineteenth century and earlier. For ex-
ample, William Rowan Hamilton dealt with com-
plex numbers explicitly as pairs of real numbers
and, as noted in Section 32, also dealt with triples
and eventually quadruples of real numbers in his
invention of the quaternions. In these cases, the
“vectors” turned out to be objects that could both
be added and multiplied by scalars, using “reason-
able” rules for both of these operations. Other ex-
amples of such objects included differential forms
(expressions under integral signs) and algebraic in-
tegers.
Although Hermann Grassmann (1809-1877) suc-
ceeded in working out a detailed theory of n
dimensional spaces in his Die Lineale Ausdehnung
slehre of 1844 and 1862, the first mathemati-
cian to give an abstract definition of a vector

space equivalent to Definition 33.1 was Giuseppe
Peano (1858-1932) in his Calcolo Geometrico of
1888. Peano’s aim in the book, as the title indi-
cates, was to develop a geometric calculus. Ac-
cording to Peano, such a calculus “consists of a
system of operations analogous to those of al-
gebraic calculus, but in which the objects with
which the calculations are performed are, in-
stead of numbers, geometrical objects.” Curiously,
Peano’s work had no immediate effect on the math-
ematical scene. Although Hermann Weyl (1885—
1955) essentially repeated Peano’s definition in his
Space-Time-Matter of 1918, the definition of a vec-
tor space did not enter the mathematical main-
stream until it was announced for a third time
by Stefan Banach (1892-1945) in the 1922 pub-
lication of his dissertation dealing with what we
now call Banach spaces, complete normed vector
spaces.
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If V is a vector space over F, then O = 0,40 = 0, and (—a)x = a(—«) = —(ax) for
allae Fanda € V.

The equation O = 0 is to be read “(0-scalar)a = 0-vector.” Likewise, a0 = 0 is to be
read “a(0-vector) = 0-vector.” The proofs here are very similar to those in Theorem 22.8
for a ring and again depend heavily on the distributive laws Z4 and Z;. Now

(Oc) = (0 + 0) = () + (Ocx)

is an equation in the abelian group (V,+), so by the group cancellation law, 0 = Oc.
Likewise, from
a0 = a(0 + 0) = a0 + a0,

we conclude that a0 = 0. Then

0=0a = (a+ (—a)x = ax + (—a)x,
s0 (—a)a = —(acx). Likewise, from

0=a0 =a(a + (—)) = ax + a(—«a),

we conclude that a(—a) = —(ax) also. L 2

Linear Independence and Bases

Let V be a vector space over F. The vectors in a subset S = {«; | i € I} of V span (or
generate) V if for every 8 € V, we have

B = a1q;, + @y, + -+ - + ana;,
for some g; € Fand o;; € S,j = 1,--- ,n. A vector > aja;, is a linear combination
of the o;.. ]
In the vector space R” over R of Example 33.2, the vectors
1,0,---,0),(0,1,---,0),---,(0,0,--- ,1)
clearly span R", for
(a1,az,- -+ ,a,) = a1(1,0,--- ,0) +a2(0,1,--- ,0) + - - - +a,(0,0,--- , 1).

Also, the monomials x™ for m > 0 span F[x] over F, the vector space of Example 33.3.
A

A vector space V over a field F is finite dimensional if there is a finite subset of V
whose vectors span V. ]

Example 33.7 shows that R”" is finite dimensional. The vector space F[x] over F is
not finite dimensional, since polynomials of arbitrarily large degree could not be linear
combinations of elements of any finite set of polynomials. A

The next definition contains the most important idea in this section.

The vectors in a subset S = {«; | i € I} of a vector space V over a field F are linearly
independent over F if, for any distinct vectors o;; € S, coefficients a; € F, and n €
Z*, wehave } " ajo;; = 0in V only if ¢; = 0 for j = 1,- - - , n. If the vectors are not
linearly independent over F, they are linearly dependent over F. ]



270

Part VII

33.11 Example

33.12 Definition

33.13 Example

33.14 Example

Commutative Algebra

Thus the vectors in {o; | i € I} are linearly independent over F if the only way the
0-vector can be expressed as a linear combination of the vectors «; is to have all scalar
coefficients equal to 0. If the vectors are linearly dependent over F, then there exist
ajeFforj=1,--- ,nsuchthat 3" | aj;; = 0, where not all a; = 0.

Observe that the vectors spanning the space R” that are given in Example 33.7 are lin-
early independent over R. Likewise, the vectors in {x™ | m > 0} are linearly independent
vectors of F[x] over F. Note that (1, —1), (2, 1), and (-3, 2) are linearly dependent in
R2 over R, since

7(1,—-1)+ (2,1) + 3(—3,2) = (0,0) = 0. A
If V is a vector space over a field F, the vectors in a subset B = {;|i € I} of V form a
basis for V over F if they span V and are linearly independent. |
As seen from Examples 33.7 and 33.11,
{(1,0,0,...,0),(,1,0,0,...,0),...,(0,0,...,0,1)}

is a basis for R” and

{1,x,2%,...}

is a basis for F[x] where F is a field. A
Let F be a field and p(x) € F[x] be a degree n > 1 irreducible polynomial over F.
Theorems 31.9 and 31.25 imply that the factor ring

E = F[x]/ (p(x))
is a field. We can think of F as a subfield of E by identifying a € F with a + (p(x)) € E.
Example 33.4 shows that E is a vector space over F. The vectors

aj=xj+(p(x)) for 0<j<n-1
are linearly independent since if
apato + a1y + azex + - - - + ap—10,—-1 = 0 € F[X]/ {p(x)},

then .
a+ax+ o+ +a X e (px).

Every polynomial in {(p(x)) except the zero polynomial has degree at least n. Thus each
coefficient g; is zero and the vectors ag, a1, . .., @, form an independent set. On the
other hand, given any polynomial f(x) € F[x], the division algorithm implies that f(x) +
(p(x)) = g(x) + (p(x)) for some polynomial g(x) where either g(x) = O or the degree of
g(x) is less than n. It follows that the vectors

o0, AL, ...y Oy

span E and therefore form a basis for E.

Looking back at this example, it is not necessary for p(x) to be an irreducible poly-
nomial. The field F can be thought of as a subring of the commutative ring with unity
E = F[x]/ {p(x)) and all the axioms of a vector space follow from the properties of a
ring and the fact that the unity in F and the unity in E are the same. A

Dimension

The only other results we wish to prove about vector spaces are that every finite-
dimensional vector space has a basis, and that any two bases of a finite-dimensional
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vector space have the same number of elements. Both these facts are true without the as-
sumption that the vector space is finite dimensional, but the proofs require more knowl-
edge of set theory than we are assuming, and the finite-dimensional case is all we need.
First we give an easy lemma.

Let V be a vector space over a field F, and let & € V. If « is a linear combination of
vectors B; in V fori=1,--- ,m and each B; is a linear combination of vectors y; in V
forj=1,---,n, then a is a linear combination of the ;.

Leta =Y 1, a;f;, and let B; = >_:_, b;y;, where a; and by are in F. Then

ai( b,,y,) =X (Zaibf;)yf,
= j=1 i=1

1 Nj= j=1

o=

i

and (Z:":l a,~b,-j) eF. *

In a finite-dimensional vector space, every finite set of vectors spanning the space con-
tains a subset that is a basis.

Let V be finite dimensional over F, and let vectors ¢, - - - , o, in V span V. Let us list
the ¢; in a row. Examine each «; in succession, starting at the left with i = 1, and discard
the first o; that is some linear combination of the preceding «; for i < j. Then continue,
starting with the following a1, and discard the next ay that is some linear combination
of its remaining predecessors, and so on. When we reach «, after a finite number of
steps, those «; remaining in our list are such that none is a linear combination of the
preceding «; in this reduced list. Lemma 33.15 shows that any vector that is a linear
combination of the original collection of o; is still a linear combination of our reduced,
and possibly smaller, set in which no «; is a linear combination of its predecessors. Thus
the vectors in the reduced set of «; again span V.
For the reduced set, suppose that

a +---+aa, =0
for iy <ip <--- <i, and that some a; # 0. We may assume from Theorem 33.5

that a, # 0, or we could drop a,a; from the left side of the equation. Then, using
Theorem 33.5 again, we obtain

a ar-1
o = —— ail+"'+ - Qs
ar ar

which shows that «; is a linear combination of its predecessors, contradicting our con-
struction. Thus the vectors «; in the reduced set both span V and are linearly indepen-
dent, so they form a basis for V over F.

A finite-dimensional vector space has a finite basis.

By definition, a finite-dimensional vector space has a finite set of vectors that span the
space. Theorem 33.16 completes the proof. *

The next theorem is the culmination of our work on vector spaces.

LetS = {a,- - - , &} be a finite set of linearly independent vectors of a finite-dimensional
vector space V over a field F. Then S can be enlarged to a basis for V over F. Further-
more, if B = {B4,-- - , B} is any basis for V over F, then r < n.

By Corollary 33.17, there is a basis B = {8, - - , B} for V over F. Consider the finite
sequence of vectors
oy, yafyﬂly"' »ﬂn»
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These vectors span V, since B is a basis. Following the technique, used in Theorem 33.16,

of discarding in turn each vector that is a linear combination of its remaining predeces-

sors, working from left to right, we arrive at a basis for V. Observe that no o; is cast out,

since the «; are linearly independent. Thus S can be enlarged to a basis for V over F.
For the second part of the conclusion, consider the sequence

ay, B, B
These vectors are not linearly independent over F, because «; is a linear combination
ar=b1f1+ -+ bupy,
since the B; form a basis. Thus
a1+ (=b)p1 + -+ (=bw)Bn = 0.

The vectors in the sequence do span V, and if we form a basis by the technique of
working from left to right and casting out in turn each vector that is a linear combination
of its remaining predecessors, at least one §; must be cast out, giving a basis

1 1
{8, BV}

where m < n — 1. Applying the same technique to the sequence of vectors

ap, 0, fl),' L BY,
we arrive at a new basis
{or, a0, 87, 87},
with s < n — 2. Continuing, we arrive finally at a basis
{a1, e, §'>, e, t(')},
where 0 <t <n-—r.Thusr <n. *

Any two bases of a finite-dimensional vector space V over F have the same number of
elements.

Let B= {1, - ,Bs} and B’ = {B,--- ,B,,} be two bases. Then by Theorem 33.18,
regarding B as an independent set of vectors and B’ as a basis, we see that n < m. A
symmetric argument gives m < n, SO m = n. L 2

If V is a finite-dimensional vector space over a field F, the number of elements in a basis
(independent of the choice of basis, as just shown) is the dimension of V over F. H

Let F be a field and V C F[x] be the set of all polynomials of degree less than r includ-
ing 0. The monomials 1,x,%2,...,x""! span V and they are independent. Consequently,
the dimension of V over F is n. From this we can conclude that any set of fewer than n
polynomials in V does not span V and any set of more than n polynomials in V is not an
independent set. Of course, an arbitrary set of r polynomials in V may or may not form
a basis. A

Modules over a Ring

When studying abelian groups using additive notation we defined what it means to
multiply an integer times an element in a group. For example, if g is an element of an
abelian group, then 2g = g + g. The table at the beginning of Section 4 looks similar to
the definition of a vector space. The difference is that instead of a field, in the case of
abelian groups we used the ring of integers.

Let R be a ring with unity. A left R-module is an abelian group M under addition
together with an operation of scalar multiplication of each element of M by each element
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of R on the left, such that for all a,b € R and «, B € M the following conditions are

satisfied:
M : aceM
M, : a(ba) = (ab)x
M;: (a+ b = (ax)+ (ba) [ ]
My:  a(e+ B)=(ax) + (aB)
Ms: la=a.

A right R-module differs from a left R-module simply by multiplying module element
by an element of R on the right with the obvious changes in the five conditions for a
left module. Here we consider only left R-modules, so we will use the term R-module
to mean left R-module.

33.23 Example For any abelian group G, G is a Z-module using the usual notation for an integer times
an element of G.

If R is a ring with unity and / C R is an ideal, then / is an additive abelian group

and for any r € R and « € I, ra € I. The defining properties of a ring with unity give

the remaining properties of an R-module. Thus [ is an R-module. A

33.24 Example Elements of R” (written as column vectors) can be multiplied on the left by elements in
the ring M,,(R) of n x n matrices with real number entries. The five properties defining
an R-module are all satisfied, which implies R” is an M, (R)-module. A

The key properties of vector spaces are Corollary 33.17 and Corollary 33.19 (and their
generalizations to vector spaces that are not finitely generated). They say any vector
space has a basis, and any two bases of a given vector space have the same number of
elements. The definitions of independent, spanning, and basis vectors are the same in
R-module as in vector spaces. However, in general an R-module need not have a basis,
and even if it does, in some cases two bases may have a different number of elements.

33.25 Example The abelian group Z; is a Z-module. There is no nonempty subset of Zj that is indepen-
dent since for any & € Z3, 3o = 0 and 3 is a nonzero integer. A similar argument shows
that for any finite abelian group G, as a Z-module G has no nonempty independent set.
‘We conclude that as a Z-module a finite abelian group does not have a basis. A

m EXERCISES 33

Computations
1. Find three bases for R? over R, no two of which have a vector in common.

In Exercises 2 and 3, determine whether the given set of vectors is a basis for R3 over R.

2. {(1,1,0),(1,0, 1), (0, 1, 1)} 3. {(-1,1,2),(2,-3, 1), (10, —14, 0)}

Determine if the indicated vector space is finite dimensional over the field. If it is, find a basis.
In Exercises 4 through 9, give a basis for the indicated vector space over the field.

4. Zy3 over Zi3 5. {a+bv2|a,b € Q) over Q
6. {ac_::zg|a,b,c,deQandc+d«/§;é0} overQ 7. Rover{a+bv2|a,beQ}

8. CoverR 9. RoverQ
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There is a field E with 32 elements. Determine which prime field is isomorphic with a subfield of E and
determine the dimension of E over its prime field.

Concepts

In Exercises 11 through 14, correct the definition of the italicized term without reference to the text, if correction
is needed, so that it is in a form acceptable for publication.

11.

12.

13.

14.
15.

The vectors in a subset S of a vector space V over a field F span V if and only if each 8 € V can be expressed
uniquely as a linear combination of the vectors in S.

The vectors in a subset S of a vector space V over a field F are linearly independent over F if and only if the
zero vector cannot be expressed as a linear combination of vectors in S.

The dimension over F of a finite-dimensional vector space V over a field F is the minimum number of vectors
required to span V.

A basis for a vector space V over a field F is a set of vectors in V that span V and are linearly dependent.
Determine whether each of the following is true or false.

a. The sum of two vectors is a vector.

b. The sum of two scalars is a vector.

¢. The product of two scalars is a scalar.

d. The product of a scalar and a vector is a vector.

e. Every vector space has a finite basis.

f. The vectors in a basis are linearly dependent.

g. The 0-vector may be part of a basis.
h. A vector space over a field F is an F-module.

i. If R is a commutative ring with unity and M is an R module, then M has a basis over R.
j- Every vector space has a basis.

Exercises 16-27 deal with the further study of vector spaces. In many cases, we are asked to define for vector
spaces some concept that is analogous to one we have studied for other algebraic structures. These exercises
should improve our ability to recognize parallel and related situations in algebra. Any of these exercises may
assume knowledge of concepts defined in the preceding exercises.

16.

17.

18.

19.

Let V be a vector space over a field F.

a. Define a subspace of the vector space V over F.
b. Prove that an intersection of subspaces of V is again a subspace of V over F.

Let V be a vector space over a field F, and let S = {«; | i € I} be a nonempty collection of vectors in V.

a. Using Exercise 16(b), define the subspace of V generated by S.

b. Prove that the vectors in the subspace of V generated by S are precisely the (finite) linear combinations of
vectors in S. (Compare with Theorem 7.7.)

Let Vi,---,V, be vector spaces over the same field F. Define the direct sum Vi @ - - - @ V,, of the vector
spaces Vi fori = 1,--- ,n, and show that the direct sum is again a vector space over F.

Generalize Example 33.2 to obtain the vector space F" of ordered n-tuples of elements of F over the field F,
for any field F. What is a basis for F"*?

20. Define an isomorphism of a vector space V over a field F with a vector space V' over the same field F.
Theory
21. Prove that if V is a finite-dimensional vector space over a field F, then a subset {8;, B2, - - - , B,} of V is a basis

for V over F if and only if every vector in V can be expressed uniquely as a linear combination of the §;.
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Let F be any field. Consider the “system of m simultaneous linear equations in n unknowns”

anXy +apXs + - +awX, = by,
a2 X1 +anXs + - -+ amXn = by,

amX1 + amXz + -+ - + amnXn = bm,
where a;;, b; € F.

a. Show that the “system has a solution,” that is, there exist Xi,--- ,X, € F that satisfy all m equations, if
and only if the vector B = (b1, - - ,bm) of F™ is a linear combination of the vectors aj = (ayj, - - - , amj).
(This result is straightforward to prove, being practically the definition of a solution, but should really be
regarded as the fundamental existence theorem for a simultaneous solution of a system of linear equations.)

b. From part (a), show that if n =m and {aj|j=1,--- ,n} is a basis for F", then the system always has a
unique solution.

Prove that every finite-dimensional vector space V of dimension n over a field F is isomorphic to the vector

space F" of Exercise 19.

Let V and V' be vector spaces over the same field F. A function ¢ : V — V' is a linear transformation of V
into V' if the following conditions are satisfied for all@, 8 € V,and a € F:

ol + B) = ¢(a) + ¢(B).
¢(aa) = a(p(a)).

a. If {B;|i € I} is abasis for V over F, show that a linear transformation ¢ : V — V' is completely determined
by the vectors ¢(8;) € V.

b. Let {B;|i € I} be abasis for V, and let {8; | i € I} be any set of vectors, not necessarily distinct, of V’. Show
that there exists exactly one linear transformation ¢ : V — V' such that ¢(8;) = 8.

Let V and V’ be vector spaces over the same field F, and let ¢ : V — V’ be a linear transformation.

a. To what concept that we have studied for the algebraic structures of groups and rings does the concept of a
linear transformation correspond?

b. Define the kernel (or nullspace) of ¢, and show that it is a subspace of V.

¢. Describe when ¢ is an isomorphism of V with V.

Let V be a vector space over a field F, and let S be a subspace of V. Define the quotient space V/S, and show

that it is a vector space over F.

Let V and V' be vector spaces over the same field F, and let V be finite dimensional over F. Let dim(V) be the

dimension of the vector space V over F. Let ¢ : V — V' be a linear transformation.

a. Show that ¢[V] is a subspace of V'.

b. Show that dim(¢[V]) = dim(V) — dim(Ker(¢)). [Hint: Choose a convenient basis for V, using Theo-
rem 33.18. For example, enlarge a basis for Ker(¢) to a basis for V.]

Let R be a commutative ring with unity and F a subring of R that is a field. Think of F as the scalars and R as
the set of vectors with scalar multiplication given by multiplication in the ring R.

a. Give an example to show that R need not be a vector space over F.
b. Show that if the unity of R and the unity of F are the same, then R is a vector space over F.

SECTION 34 UNIQUE FACTORIZATION DOMAINS

The integral domain Z is our standard example of an integral domain in which there is
unique factorization into primes (irreducibles). Section 28 showed that for a field F, F[x]
is also such an integral domain with unique factorization. In order to discuss analogous
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ideas in an arbitrary integral domain, we shall give several definitions, some of which
are repetitions of earlier ones. It is nice to have them all in one place for reference.

Let R be a commutative ring with unity and let @, b € R. If there exists ¢ € R such that
b = ac, then a divides b (or a is a factor of b), denoted by a|b. We read a t b as “a
does not divide b.” [ ]

An element u of a commutative ring with unity R is a unit of R if u divides 1, that is, if
u has a multiplicative inverse in R. Two elements a, b € R are associates in R if a = bu,
where u is a unit in R.

Exercise 27 asks us to show that this criterion for a and b to be associates is an
equivalence relation on R. [ ]

The only units in Z are 1 and —1. Thus the only associates of 26 in Z are 26 and
—26. A

A nonzero element p that is not a unit of an integral domain D is an irreducible of D if
every factorization p = ab in D has the property that either a or b is a unit. n

Note that an associate of an irreducible p is again an irreducible, for if p = uc for a
unit u, then any factorization of ¢ provides a factorization of p.

An integral domain D is a unique factorization domain (abbreviated UFD) if the fol-
lowing conditions are satisfied:

1. Every element of D that is neither 0 nor a unit can be factored into a product
of a finite number of irreducibles.

2. Ifp;---p,andq, - - - g, are two factorizations of the same element of D into
irreducibles, then r = s and the g; can be renumbered so that p; and g; are
associates. |

Theorem 28.21 shows that for a field F, F[x] is a UFD. Also we know that Z is a UFD;
we have made frequent use of this fact, although we have never proved it. For example,
in Z we have

24 = (2)(2)3)Q2) = (=2)(=3)(2)(2).

Here 2 and —2 are associates, as are 3 and —3. Thus except for order and associates, the
irreducible factors in these two factorizations of 24 are the same. A

Recall that the principal ideal {(a) of D consists of all multiples of the element a.
After just one more definition we can describe what we wish to achieve in this section.

An integral domain D is a principal ideal domain (abbreviated PID) if every ideal in
D is a principal ideal. u

We know that Z is a PID because every ideal is of the form nZ, generated by some
integer n. Theorem 31.24 shows that if F is a field, then F[x] is a PID. Our purpose in
this section is to prove two exceedingly important theorems:

1. Every PID is a UFD. (Theorem 34.18)
2. If Dis a UFD, then D[x] is a UFD. (Theorem 34.30)
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m HISTORICAL NOTE

he question of unique factorization in an inte-

gral domain other than the integers was first
raised in public in connection with the attempted
proof by Gabriel Lamé (1795-1870) of Fermat’s
Last Theorem, the conjecture that x" + y" = z" has
no nontrivial integral solutions for n > 2. It is not
hard to show that the conjecture is true if it can
be proved for all odd primes p. At a meeting of
the Paris Academy on March 1, 1847, Lamé an-
nounced that he had proved the theorem and pre-
sented a sketch of the proof. Lamé’s idea was first
to factor x” + y” over the complex numbers as

xP +yP =
G+ Y+ ap)x+ady) - (x+a”7y)

where o is a primitive pth root of unity. He next
proposed to show that if the factors in this ex-
pression are relatively prime and if x* + y? = 27,
then each of the p factors must be a pth power.
He could then demonstrate that this Fermat equa-
tion would be true for a triple x', y', Z, each number
smaller than the corresponding number in the orig-
inal triple. This would lead to an infinite descend-
ing sequence of positive integers, an impossibility
that would prove the theorem.

After Lamé finished his announcement, how-
ever, Joseph Liouville (1809-1882) cast serious
doubts on the purported proof, noting that the con-
clusion that each of the relatively prime factors
was a pth power because their product was a pth
power depended on the result that any integer can
be uniquely factored into a product of primes.
It was by no means clear that “integers” of the

form x + oy had this unique factorization prop-
erty. Although Lamé attempted to overcome Liou-
ville’s objections, the matter was settled on May
24, when Liouville produced a letter from Ernst
Kummer noting that in 1844 he had already proved
that unique factorization failed in the domain Z[«],
where « is a 23rd root of unity.

It was not until 1994 that Fermat’s Last Theo-
rem was proved, and by techniques of algebraic ge-
ometry unknown to Lamé and Kummer. In the late
1950s, Yutaka Taniyama and Goro Shimura no-
ticed a curious relationship between two seemingly
disparate fields of mathematics, elliptic curves and
modular forms. A few years after Taniyama’s tragic
death at age 31, Shimura clarified this idea and
eventually formulated what became known as the
Taniyama—Shimura Conjecture. In 1984, Gerhard
Frey asserted and in 1986 Ken Ribet proved that
the Taniyama—Shimura Conjecture would imply
the truth of Fermat’s Last Theorem. But it was fi-
nally Andrew Wiles of Princeton University who,
after secretly working on this problem for seven
years, gave a series of lectures at Cambridge Uni-
versity in June 1993 in which he announced a proof
of enough of the Taniyama-Shimura Conjecture
to derive Fermat’s Last Theorem. Unfortunately, a
gap in the proof was soon discovered, and Wiles
went back to work. It took him more than a year,
but with the assistance of his student Richard Tay-
lor, he finally was able to fill the gap. The result
was published in the Arnals of Mathematics in
May 1995, and this 350-year-old problem was now
solved.
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The fact that F[x] is a UFD, where F is a field (by Theorem 28.21), illustrates both
theorems. For by Theorem 31.24, F[x] is a PID. Also, since F has no nonzero elements
that are not units, F satisfies our definition for a UFD. Thus Theorem 34.30 would give
another proof that F[x] is a UFD, except for the fact that we shall actually use Theorem
28.21 in proving Theorem 34.30. In the following section we shall study properties of a
certain special class of UFDs, the Euclidean domains.

Let us proceed to prove the two theorems.

Every PID Is a UFD

The steps leading up to Theorem 28.21 and its proof indicate the way for our proof of
Theorem 34.18. Much of the material will be repetitive. We inefficiently handled the
special case of F[x] separately in Theorem 28.21, since it was easy and was the only
case we needed for our field theory in general.
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To prove that an integral domain D is a UFD, it is necessary to show that both
Conditions 1 and 2 of the definition of a UFD are satisfied. For our special case of F[x]
in Theorem 28.21, Condition 1 was very easy and resulted from an argument that in
a factorization of a polynomial of degree > 0 into a product of two nonconstant poly-
nomials, the degree of each factor was less than the degree of the original polynomial.
Thus we couldn’t keep on factoring indefinitely without running into unit factors, that
is, polynomials of degree 0. For the general case of a PID, it is harder to show that this
is so. We now turn to this problem. We shall need the definition of the union of an arbi-
trary collection of sets. The definition must include the possibility that the collection of
sets is infinite.

If {A; | i € I} is a collection of sets, then the union U;c;A; of the sets A; is the set of all
x such that x € A; for at leastone i € 1. [ ]

Let R be a commutative ring and let Ny € N, C - - - be an ascending chain of ideals N;
in R. Then N = U;N; is an ideal of R.

Let a,b € N. Then there are ideals N; and N; in the chain, with a € N; and b € N;. Now
either N; € N; or N; € N;; let us assume that N; C Nj, so both a and b are in Nj;. This
implies that a = b and ab are in Nj, so a £ b and ab are in N. Taking a = 0, we see that
b € N implies —b € N, and 0 € N since 0 € N;. Thus N is a subring of D. Fora € N
and d € D, we must have a € N; for some N;. Then since N; is an ideal, da = ad is in
N;. Therefore, da € U;N;, that is, da € N. Hence N is an ideal. *

(Ascending Chain Condition for a PID) Let D be a PID. If Ny C N, C --- is an
ascending chain of ideals N, then there exists a positive integer r such that N, = N for
all s > r. Equivalently, every strictly ascending chain of ideals (all inclusions proper) in
a PID is of finite length. We express this by saying that the ascending chain condition
(ACC) holds for ideals in a PID.

By Lemma 34.9, we know that N = U;N; is an ideal of D. Now as an ideal in D, which
is a PID, N = (c) for some ¢ € D. Since N = U;N;, we must have ¢ € N,, for some
r € Z*.For s > r, we have

() SN, S N; SN ={c).

Thus N, = N, fors > r.
The equivalence with the ACC is immediate. L 2

A commutative ring with unity R that satisfies the ascending chain condition is a
Noetherian ring. That is, a commutative ring with unity R is Noetherian if for every
chain of ideals Ny £ N, € N3 C ... in R, there is an integer r such that if s > r, then
N, =N;. |

Lemma 34.10 states that every PID is a Noetherian ring. In Section 37 we will see that
if R is a Noetherian ring, then R[x] is also a Noetherian ring.

In what follows, it will be useful to remember that for elements a and b of a
domain D,

(a) C (b) if and only if b divides a, and

(a) = (b) if and only if a and b are associates.
For the first property, note that (a) C (b) if and only if a € (b), which is true if and
only if a = bd for some d € D, so that b divides a. Using this first property, we see that

(a) = (b) if and only if a = bc and b = ad for some c,d € D. But then a = adc and by
canceling, we obtain 1 = dc. Thus d and c are units, so a and b are associates.
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We can now prove Condition 1 of the definition of a UFD for an integral domain
that is a PID.

Let D be a PID. Every element that is neither O nor a unit in D is a product of irre-
ducibles.

Leta € D, where a is neither 0 nor a unit. We first show that a has at least one irreducible
factor. If a is an irreducible, we are done. If a is not an irreducible, then a = a; b;, where
neither a; nor b, is a unit. Now

{a) C (a1),

for (a) C (a;) follows from a = a,b;, and if (a) = (a;), then a and a; would be asso-
ciates and b; would be a unit, contrary to construction. Continuing this procedure then,
starting now with a;, we arrive at a strictly ascending chain of ideals

(@) C{a1) Clax) C---.

By the ACC in Lemma 34.10, this chain terminates with some (a,}, and a, must then be
irreducible. Thus a has an irreducible factor a,.

By what we have just proved, for an element a that is neither 0 nor a unit in D,
either a is irreducible or a = pc; for p; an irreducible and ¢, not a unit. By an argument
similar to the one just made, in the latter case we can conclude that (@) C {c;). If ¢ is
not irreducible, then ¢; = p,c; for an irreducible p, with ¢, not a unit. Continuing, we
get a strictly ascending chain of ideals

(@) Clc) Cle) C--- .

This chain must terminate, by the ACC in Lemma 34.10, with some ¢, = g, that is an
irreducible. Then a = pips - - - prqr. L 4

This completes our demonstration of Condition 1 of the definition of a UFD. Let us
turn to Condition 2. Our arguments here are parallel to those leading to Theorem 28.21.
The results we encounter along the way are of some interest in themselves.

(Generalization of Theorem 31.25) An ideal (p) in a PID is maximal if and only if p
is an irreducible.

Let (p) be a maximal ideal of D, a PID. Suppose that p = ab in D. Then (p) C (a).
Suppose that (a) = (p). Then a and p would be associates, so b must be a unit. If (a) #
(p), then we must have (a) = (1) = D, since (p) is maximal. But then a and 1 are
associates, so a is a unit. Thus, if p = ab, either a or b must be a unit. Hence p is an
irreducible of D.

Conversely, suppose that p is an irreducible in D. Then if (p) C (a), we must have
p = ab. Now if a is a unit, then (a) = (1) = D. If a is not a unit, then b must be a unit,
so there exists # € D such that bu = 1. Then pu = abu = a, so {a) C (p), and we have
(a) = (p). Thus (p) C (a) implies that either (a) = D or (a) = (p), and (p) # D or p
would be a unit. Hence (p) is a maximal ideal. *

(Generalization of Theorem 31.27) In a PID, if an irreducible p divides ab, then
eitherp|aorp|b.

Let D be a PID and suppose that for an irreducible p in D we have p | ab. Then (ab) €
(p). Since every maximal ideal in D is a prime ideal by Corollary 31.16, (ab) € (p)
implies that either a € (p) or b € (p), giving either p|a or p | b. *

If p is an irreducible in a PID and p divides the product a;a; - - - a, for a; € D, thenp | a;
for at least one i.
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Proof of this corollary is immediate from Lemma 34.14 if we use mathematical
induction. .

A nonzero nonunit element p of an integral domain D is a prime if, for all a,b € D,
p | ab implies either p [a orp | b. n

Lemma 34.14 focused our attention on the defining property of a prime. In Exer-
cises 25 and 26, we ask you to show that a prime in an integral domain is always an
irreducible and that in a UFD an irreducible is also a prime. Thus the concepts of prime
and irreducible coincide in a UFD. Example 34.17 will exhibit an integral domain con-
taining some irreducibles that are not primes, so the concepts do not coincide in every
domain.

Let F be a field and let D be the subdomain F[x3, xy, y*] of F[x,y]. Then x3, xy, and y>
are irreducibles in D, but 33

()07 = ) () (xy).
Since xy divides x*y® but not x* or y?, we see that xy is not a prime. Similar arguments
show that neither x* nor y is a prime. A

The defining property of a prime is precisely what is needed to establish uniqueness
of factorization, Condition 2 in the definition of a UFD. We now complete the proof of
Theorem 34.18 by demonstrating the uniqueness of factorization in a PID.

(Generalization of Theorem 28.21) Every PID is a UFD.

Theorem 34.12 shows that if D is a PID, then each a € D, where a is neither O nor a
unit, has a factorization

a=pipr--pr
into irreducibles. It remains for us to show uniqueness. Let
a=qiq--gs

be another such factorization into irreducibles. Then we have p; | (¢192 - - - ¢5), which
implies that p; | g; for some j by Corollary 34.15. By changing the order of the g; if
necessary, we can assume that j = 1 so p; | ¢1. Then g; = pu;, and since q; is an irre-
ducible, u; is a unit, so p; and g; are associates. We have then

pPip2:--pr=pi1qz- - gs,

so by the cancellation law in D,
P2 pr=uwq2---gs.
Continuing this process, starting with p, and so on, we finally arrive at
l=wur - wGri1--gs.
Since the g; are irreducibles, we must have r = s. *

Example 34.32 at the end of this section will show that the converse to Theorem
34.18 is false. That is, a UFD need not be a PID.

Many algebra texts start by proving the following corollary of Theorem 34.18. We
have assumed that you were familiar with this corollary and used it freely in our other
work.

(Fundamental Theorem of Arithmetic) The integral domain Z is a UFD.
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‘We have seen that all ideals in Z are of the form nZ = (n) for n € Z. Thus Z is a PID,
and Theorem 34.18 applies. *

It is worth noting that the proof that Z is a PID was really way back in Corol-
lary 6.7. We proved Theorem 6.6 by using the division algorithm for Z exactly as we
proved, in Theorem 31.24, that F[x] is a PID by using the division algorithm for F[x].
In Section 35, we shall examine this parallel more closely.

If D Is a UFD, Then D[x] Is a UFD

‘We now start the proof of Theorem 34.30, our second main result for this section. The
idea of the argument is as follows. Let D be a UFD. We can form a field of quotients
F of D. Then F[x] is a UFD by Theorem 28.21, and we shall show that we can recover
a factorization for f(x) € D[x] from its factorization in F[x]. It will be necessary to
compare the irreducibles in F[x] with those in D[x], of course. This approach, which
we prefer as more intuitive than some more efficient modern ones, is essentially due to
Gauss.

Let D be a UFD and let ay,a,, - - - ,a, be nonzero elements of D. An element d of D is
a greatest common divisor (abbreviated gcd) of all of the g; if d|a; fori=1,--- ,n
and any other d’ € D that divides all the g; also divides d. ]

In this definition, we called d “a” gcd rather than “the” gcd because ged’s are only
defined up to units. Suppose that d and d' are two gcd’s of g; fori = 1,--- ,n. Thend | d’
and d’ | d by our definition. Thus d = ¢'d’ and d’ = qd for some q,q' € D,so 1d = ¢'qd.
By cancellation in D, we see that g'q = 1 so g and ¢ are indeed units.

The technique in the example that follows shows that gcd’s exist in a UFD.

Let us find a gcd of 420, —168, and 252 in the UFD Z. Factoring, we obtain 420 = 22.
3.5.7,—168 =2%.(—3)- 7, and 252 = 2% . 32. 7. We choose one of these numbers,
say 420, and find the highest power of each of its irreducible factors (up to associates)
that divides all the numbers, 420, —168, and 252 in our case. We take as gcd the product
of these highest powers of irreducibles. For our example, these powers of irreducible
factors of 420 are 22,3!,5% and 7! so we take as gedd =4-3-1-7 = 84. The only
other gcd of these numbers in Z is —84, because 1 and —1 are the only units. A

Execution of the technique in Example 34.21 depends on being able to factor an
element of a UFD into a product of irreducibles. This can be a tough job, even in Z.
Section 35 will exhibit a technique, the Euclidean Algorithm, that will allow us to find
ged’s without factoring in a class of UFD’s that includes Z and F[x] for a field F.

Let D be a UFD. A nonconstant polynomial

f@=a+ax+---+ax"
in D[x] is primitive if 1 is a gcd of the g; fori =0, 1,--- ,n. a
In Z[x],4x% + 3x + 2 is primitive, but 4x2 + 6x + 2 is not, since 2, a nonunit in Z, is a
common divisor of 4, 6, and 2. A

Observe that every nonconstant irreducible in D[x] must be a primitive polynomial.
If D is a UFD, then for every nonconstant f(x) € D[x] we have f(x) = (c)g(x), where

¢ € D, g(x) € D[x], and g(x) is primitive. The element c is unique up to a unit factor in
D and is the content of f(x). Also g(x) is unique up to a unit factor in D.
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Let f(x) € D[x] be given where f(x) is a nonconstant polynomial with coefficients
agp,ay, -+ ,a,. Let ¢ be a ged of the g; for i =0,1,--- ,n. Then for each i, we have
a; = cq; for some g; € D. By the distributive law, we have f(x) = (c)g(x), where no
irreducible in D divides all of the coefficients gg,q, - - ,g, of g(x). Thus g(x) is a
primitive polynomial.

For uniqueness, if also f(x) = (d)h(x) for d € D, h(x) € D[x], and h(x) primitive,
then each irreducible factor of ¢ must divide d and conversely. By setting (c)g(x) =
(d)h(x) and canceling irreducible factors of ¢ into d, we arrive at (u)g(x) = (v)h(x) for a
unit # € D. But then v must be a unit of D or we would be able to cancel irreducible fac-
tors of v into . Thus u and v are both units, so ¢ is unique up to a unit factor. From f(x) =
(c)g(x), we see that the primitive polynomial g(x) is also unique up to a unit factor. @

In Z[x],

42 4 6x — 8 = (2)(2x% +3x — 4),
where 2x3 + 3x — 4 is primitive. A
(Gauss’s Lemma) If D is a UFD, then a product of two primitive polynomials in D[x]

is again primitive.
Let
f=a+ax+---+ax"

and
gx)=byo+byx+---+ byx"

be primitive in D[x], and let h(x) = f(x)g(x). Let p be an irreducible in D. Then p does
not divide all a; and p does not divide all b;, since f(x) and g(x) are primitive. Let a, be
the first coefficient of f(x) not divisible by p; that is, p | a; for i < r, but pta, (that is,
p does not divide a,). Similarly, let p | b; for j < s, but ptb;. The coefficient of x** in
h(x) = f(x)g(x) is
Cris = (aObr+s +---+ ar—lbs+1) + arbs + (ar+1bs—1 +---+ ar+sb0)~

Now p | g; for i < r implies that

p l (a0b7+s +---+ ar—lbs+1)y
and also p | b; for j < s implies that

p | (ar+1bs—1 +---4+ ar+sb0)~

But p does not divide a, or by, so p does not divide a,b,, and consequently p does not
divide c,;,. This shows that given an irreducible p € D, there is some coefficient of
f(x)g(x) not divisible by p. Thus f(x)g(x) is primitive. *

If D is a UFD, then a finite product of primitive polynomials in D[x] is again primitive.
This corollary follows from Lemma 34.26 by induction. *

Now let D be a UFD and let F be a field of quotients of D. By Theorem 28.21,
F[x] is a UFD. As we said earlier, we shall show that D[x] is a UFD by carrying a
factorization in F[x] of f(x) € D[x] back into one in D[x]. The next lemma relates the
nonconstant irreducibles of D[x] to those of F[x]. This is the last important step.

Let D be a UFD and let F be a field of quotients of D. Let f(x) € D[x], where (degree
f(x) > 0.If f(x) is an irreducible in D[x], then f(x) is also an irreducible in F[x]. Also,
if f(x) is primitive in D[x] and irreducible in F[x], then f(x) is irreducible in D[x].
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Suppose that a nonconstant f(x) € D[x] factors into polynomials of lower degree in F[x],
that is,
fG) = r(x)s(x)

for r(x), s(x) € F[x]. Then since F is a field of quotients of D, each coefficient in r(x)
and s(x) is of the form a/b for some a, b € D. By clearing denominators, we can get

@fx) = nx)s1(x)

for d € D, and ri(x), s1(x) € D[x], where the degrees of r;(x) and s,(x) are the degrees
of r(x) and s(x), respectively. By Lemma 34.24, f(x) = (c)g(x), ri(x) = (c1)r2(x), and
51(x) = (c2)s2(x) for primitive polynomials g(x), r»(x), and s,(x), and c, ¢;, ¢; € D. Then

(dc)g(x) = (c1c2)ra(x)s2(x),

and by Lemma 34.26, ry(x)s2(x) is primitive. By the uniqueness part of Lemma 34.24,
ci1¢2 = dcu for some unit u in D. But then

(do)g(x) = (dewyray(x)s2(x),
)
f@) = (©)g(x) = (cu)ra(x)s2(x).
We have shown that if f(x) factors nontrivially in F[x], then f (x) factors nontrivially into
polynomials of the same degrees in D[x]. Thus if f(x) € D[x] is irreducible in D[x], it
must be irreducible in F[x].

A nonconstant f(x) € D[x] that is primitive in D[x] and irreducible in F[x] is also
irreducible in D[x], since D[x] C F[x]. *

Lemma 34.28 shows that if D is a UFD, the irreducibles in D[x] are precisely the ir-
reducibles in D, together with the nonconstant primitive polynomials that are irreducible
in F[x], where F is a field of quotients of D[x].

The preceding lemma is very important in its own right. This is indicated by the
following corollary, a special case of which was our Theorem 28.12. (We admit that it
does not seem very sensible to call a special case of a corollary of a lemma a theorem.
The label assigned to a result depends somewhat on the context in which it appears.)

If D is a UFD and F is a field of quotients of D, then a nonconstant f(x) € D[x] factors
into a product of two polynomials of lower degrees r and s in F[x] if and only if it has a
factorization into polynomials of the same degrees r and s in D[x].

It was shown in the proof of Lemma 34.28 that if f(x) factors into a product of two
polynomials of lower degree in F[x], then it has a factorization into polynomials of the
same degrees in D[x] (see the next-to-last sentence of the first paragraph of the proof).

The converse holds since D[x] C F[x]. *

‘We are now prepared to prove our main theorem.

If D is a UFD, then D[x] is a UFD.

Let f(x) € D[x], where f(x) is neither O nor a unit. If f(x) is of degree 0, we are done,
since D is a UFD. Suppose that (degree f(x)) > 0. Let

f(x) = g1(x)g2(x) - - - g-(x)

be a factorization of f(x) in D[x] having the greatest number r of factors of positive
degree. (There is such a greatest number of such factors because r cannot exceed the
degree of f(x).) Now factor each g;(x) in the form g;(x) = c¢;h;(x) where ; is the content
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of g;(x) and h;(x) is a primitive polynomial. Each of the h;(x) is irreducible, because if
it could be factored, none of the factors could lie in D, hence all would have positive
degree leading to a corresponding factorization of g;(x), and then to a factorization of
f(x) with more than r factors of positive degree, contradicting our choice of r. Thus we
now have

f&x) = c1hi(X)caha(x) - - - chy(x)

where the h;(x) are irreducible in D[x]. If we now factor the ¢; into irreducibles in D, we
obtain a factorization of f(x) into a product of irreducibles in D[x].

The factorization of f(x) € D[x], where f(x) has degree 0, is unique since D is a
UFD; see the comment following Lemma 34.28. If f(x) has degree greater than 0, we
can view any factorization of f(x) into irreducibles in D[x] as a factorization in F[x] into
units (that is, the factors in D) and irreducible polynomials in F[x] by Lemma 34.28.
By Theorem 28.21, these polynomials are unique, except for possible constant factors
in F. But as an irreducible in D[x], each polynomial of degree >0 appearing in the
factorization of f(x) in D[x] is primitive. By the uniqueness part of Lemma 34.24, this
shows that these polynomials are unique in D[x] up to unit factors, that is, associates.
The product of the irreducibles in D in the factorization of f(x) is the content of f(x),
which is again unique up to a unit factor by Lemma 34.24. Thus all irreducibles in D[x]
appearing in the factorization are unique up to order and associates. L 4

If F is a field and xy, - - - , x, are indeterminates, then F[xi, - - - ,x,] is a UFD.

By Theorem 28.21, F[x;] is a UFD. By Theorem 34.30, so is (F[x;])[x2] = F[x1,x5].
Continuing in this procedure, we see (by induction) that F[x;, - - - ,x,] is a UFD. *

We have seen that a PID is a UFD. Corollary 34.31 makes it easy for us to give an
example that shows that not every UFD is a PID.

Let F be a field and let x and y be indeterminates. Then F[x, y] is a UFD by Corollary
34.30. Consider the set N of all polynomials in x and y in F[x, y] having constant term 0.
Then N is an ideal, but not a principal ideal. Thus F[x, y] is not a PID. A

Another example of a UFD that is not a PID is Z[x], as shown in Exercise 12,
Section 35.

m EXERCISES 34

Computations

In Exercises 1 through 8, determine whether the element is an irreducible of the indicated domain.

1. 5inZ

3. 14inZ

5. 2x — 10 in Z[x]
7. 2x — 10 in Q[x]
9.

2. —17inZ

4. 2x—3in Z[x]
6. 2x — 3in Q[x]
8. 2x — 10in Z;1[x]

. If possible, give four different associates of 2x — 7 viewed as an element of Z[x]; of Q[x]; of Z; [x].

10. Factor the polynomial 4x*> — 4x 4+ 8 into a product of irreducibles viewing it as an element of the integral
domain Z[x]; of the integral domain Q[x]; of the integral domain Zj, [x].

In Exercises 11 through 13, find all gcd’s of the given elements of Z.

11. 234, 3250, 1690

12, 784, —1960, 448 13. 2178, 396, 792, 594
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In Exercises 14 through 17, express the given polynomial as the product of its content with a primitive polynomial
in the indicated UFD.

14. 18x% — 12x + 48 in Z[x] 15. 18x2 — 12x + 48 in Q[x]
16. 2x2 — 3x + 6in Z[x] 17. 2x2 — 3x + 6 in Z[x]
Concepts

In Exercises 18 through 20, correct the definition of the italicized term without reference to the text, if correction
is needed, so that it is in a form acceptable for publication.

18. Two elements a and b in an integral domain D are associates in D if and only if their quotient a/b in D is a unit.

19. An element of an integral domain D is an irreducible of D if and only if it cannot be factored into a product
of two elements of D.

20. An element of an integral domain D is a prime of D if and only if it cannot be factored into a product of two
smaller elements of D.

21. Determine whether each of the following is true or false.

. Every field is a UFD.

. Every field is a PID.

. Every PID is a UFD.

. Every UFD is a PID.

. Z[x] is a UFD.

. Any two irreducibles in any UFD are associates.

. If D is a PID, then D[x] is a PID.

. If D is a UFD, then D[x] is a UFD.
i. In any UFD, if p | a for an irreducible p, then p itself appears in every factorization of a.
Jj- A UFD has no divisors of 0.

22. Let D be a UFD. Describe the irreducibles in D[x] in terms of the irreducibles in D and the irreducibles in
FI[x], where F is a field of quotients of D.

23. Lemma 34.28 states that if D is a UFD with a field of quotients F, then a nonconstant irreducible f(x) of D[x]
is also an irreducible of F[x]. Show by an example that a g(x) € D[x] that is an irreducible of F[x] need not be
an irreducible of D[x].

e om o e TS

24. All our work in this section was restricted to integral domains. Taking the same definition in this section
but for a commutative ring with unity, consider factorizations into irreducibles in Z x Z. What can happen?
Consider in particular (1, 0).

Theory

25. Prove that if p is a prime in an integral domain D, then p is an irreducible.

26. Prove that if p is an irreducible in a UFD, then p is a prime.

27. For a commutative ring R with unity show that the relation a ~ b if a is an associate of b (that is, if a = bu
for u a unit in R) is an equivalence relation on R.

28. Let D be an integral domain. Exercise 39, Section 22 showed that (U, -) is a group where U is the set of units
of D. Show that the set D* — U of nonunits of D excluding O is closed under multiplication. Is this set a group
under the multiplication of D?

29. Let D be a UFD. Show that a nonconstant divisor of a primitive polynomial in D[x] is again a primitive
polynomial.

30. Show that in a PID, every proper ideal is contained in a maximal ideal. [Hint: Use Lemma 34.10.]
31. Factor x> — y3 into irreducibles in Q[x, y] and prove that each of the factors is irreducible.

There are several other concepts often considered that are similar in character to the ascending chain condition on
ideals in a ring. The following three exercises concern some of these concepts.
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. Let R be any ring. The ascending chain condition (ACC) for ideals holds in R if every strictly increasing
sequence N1 C No C N3 C --- of ideals in R is of finite length. The maximum condition (MC) for ideals
holds in R if every nonempty set S of ideals in R contains an ideal not properly contained in any other ideal of
the set S. The finite basis condition (FBC) for ideals holds in R if for each ideal N in R, there is a finite set
By = {b1,- - ,bn} C N such that N is the intersection of all ideals of R containing By. The set By is a finite
generating set for N.

Show that for every ring R, the conditions ACC, MC, and FBC are equivalent.
Let R be any ring. The descending chain condition (DCC) for ideals holds in R if every strictly decreasing
sequence N1 O N D N3 D --- of ideals in R is of finite length. The minimum condition (mC) for ideals
holds in R if given any set S of ideals of R, there is an ideal of S that does not properly contain any other ideal
in the set S.

Show that for every ring, the conditions DCC and mC are equivalent.

. Give an example of a ring in which ACC holds but DCC does not hold. (See Exercises 32 and 33.)

SECTION 35 EUCLIDEAN DOMAINS

We have remarked several times on the importance of division algorithms. Our first
contact with them was the division algorithm for Z in Section 6. This algorithm was
used to prove the important theorem that a subgroup of a cyclic group is cyclic, that
is, has a single generator. Of course, this shows at once that Z is a PID. The division
algorithm for F[x] appeared in Theorem 28.2 and was used in a completely analogous
way to show that F[x] is a PID. A technique of mathematics is to take some clearly
related situations and to try to bring them under one roof by abstracting the important
ideas common to them. The following definition is an illustration of this technique, as
is this whole text! Let us see what we can develop by starting with the existence of a
fairly general division algorithm in an integral domain.

35.1 Definition A Euclidean norm on an integral domain D is a function v mapping the nonzero el-
ements of D into the nonnegative integers such that the following conditions are satis-
fied:

1. Foralla,b € D with b # 0, there exist g and r in D such thata = bg + r,
where either r = 0 or v(r) < v(b).
2. Forall a,b € D, where neither a nor b is 0, v(a) < v(ab).
An integral domain D is a Euclidean domain if there exists a EuclideannormonD. H

The importance of Condition 1 is clear from our discussion. The importance of
Condition 2 is that it will enable us to characterize the units of a Euclidean domain D.

35.2 Example The integral domain Z is a Euclidean domain, for the function v defined by v(n) = |n|
for n # 0 in Z is a Euclidean norm on Z. Condition 1 holds by the division algorithm
for Z. Condition 2 follows from |ab| = |a||b| and |a| > 1 fora # 0in Z. A

35.3 Example If F is a field, then F[x] is a Euclidean domain, for the function v defined by v(f(x)) =
(degree f(x)) for f(x) € F[x], and f(x) # 0 is a Euclidean norm. Condition 1 holds by
Theorem 28.2, and Condition 2 holds since the degree of the product of two polynomials
is the sum of their degrees. A

Of course, we should give some examples of Euclidean domains other than these
familiar ones that motivated the definition. We shall do this in Section 36. In view of the
opening remarks, we anticipate the following theorem.

35.4 Theorem Every Euclidean domain is a PID.
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Let D be a Euclidean domain with a Euclidean norm v, and let N be an ideal in D.
If N = {0}, then N = (0) and N is principal. Suppose that N # {0}. Then there exists
b # 0 in N. Let us choose b such that v(b) is minimal among all v(r) for n € N. We
claim that N = (b). Let a € N. Then by Condition 1 for a Euclidean domain, there exist
g and r in D such that

a=bqg+r,

where either r = 0 or v(r) < v(b). Now r = a — bg and a,b € N, so that r € N since N
is an ideal. Thus v(r) < v(b) is impossible by our choice of b. Hence r = 0, so a = bgq.
Since a was any element of N, we see that N = (b). *

A Euclidean domain is a UFD.

By Theorem 35.4, a Euclidean domain is a PID and by Theorem 34.18, a PID is a
UFD. L 4

Finally, we should mention that while a Euclidean domain is a PID by Theo-
rem 35.4, not every PID is a Euclidean domain. Examples of PIDs that are not Euclidean
are not easily found, however.

Arithmetic in Euclidean Domains

We shall now investigate some properties of Euclidean domains related to their multi-
plicative structure. We emphasize that the arithmetic structure of a Euclidean domain
is not affected in any way by a Euclidean norm v on the domain. A Euclidean norm is
merely a useful tool for possibly throwing some light on this arithmetic structure of the
domain. The arithmetic structure of a domain D is completely determined by the set D
and the two binary operations + and - on D.

Let D be a Euclidean domain with a Euclidean norm v. We can use Condition 2 of
a Euclidean norm to characterize the units of D.

For a Euclidean domain with a Euclidean norm v, v(1) is minimal among all v(a) for
nonzero a € D, and u € D is a unit if and only if v(x) = v(1).
Condition 2 for v tells us at once that for a # 0,
v(1l) < v(la) = v(a).
On the other hand, if u is a unit in D, then
v(u) < v(uu‘l) =v(l).
Thus
v(u) = v(1)

for a unit u in D.
Conversely, suppose that a nonzero u € D is such that v(u) = v(1). Then by the
division algorithm, there exist g and r in D such that

l=ug+r,

where either r = 0 or v(r) < v(x). But since v(x) = v(1) is minimal over all v(d) for
nonzero d € D, v(r) < v(u) is impossible. Hence r = 0 and 1 = ug, so u is aunit. @
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m HISTORICAL NOTE

he Euclidean algorithm appears in Euclid’s

Elements as propositions 1 and 2 of Book VII,
where it is used as here to find the greatest com-
mon divisor of two integers. Euclid uses it again in
Book X (propositions 2 and 3) to find the greatest
common measure of two magnitudes (if it exists)
and to determine whether two magnitudes are in-
commensurable.

The algorithm appears again in the Brahmes-
phutasiddhanta (Correct Astronomical System of
Brahma) (628) of the seventh-century Indian math-
ematician and astronomer Brahmagupta. To solve
the indeterminate equation rx + ¢ = sy in integers,
Brahmagupta uses Euclid’s procedure to “recip-
rocally divide” r by s until he reaches the final
nonzero remainder. By then using, in effect, a sub-
stitution procedure based on the various quotients
and remainders, he produces a straightforward al-
gorithm for finding the smallest positive solution
to his equation.

The thirteenth-century Chinese algebraist Qin
Jiushao also used the Euclidean algorithm in his so-
lution of the so-called Chinese Remainder problem
published in the Shushu jiuzhang (Mathematical
Treatise in Nine Sections) (1247). Qin’s goal was
to display a method for solving the system of con-
gruences N = r; (mod m;). As part of that method
he needed to solve congruences of the form Nx = 1
(mod m), where N and m are relatively prime.
The solution to a congruence of this form is again
found by a substitution procedure, different from
the Indian one, using the quotients and remainders
from the Euclidean algorithm applied to N and m.
It is not known whether the common element in
the Indian and Chinese algorithms, the Euclidean
algorithm itself, was discovered independently
in these cultures or was learned from Greek
sources.

35.7 Example

35.8 Example

35.9 Theorem

For Z with v(n) = |n|, the minimum of v(n) for nonzero n € Z is 1, and 1 and —1
are the only elements of Z with v(n) = 1. Of course, 1 and —1 are exactly the units
of Z. A

For F[x] with v(f(x)) = (degree f(x)) for f(x) # 0, the minimum value of v(f(x)) for all
nonzero f(x) € F[x] is 0. The nonzero polynomials of degree 0 are exactly the nonzero
elements of F, and these are precisely the units of F[x]. A

We emphasize that everything we prove here holds in every Euclidean domain, in
particular in Z and F[x]. As indicated in Example 34.21, we can show that any a and b
in a UFD have a gcd and actually compute one by factoring a and b into irreducibles, but
such factorizations can be very tough to find. However, if a UFD is actually Euclidean,
and we know an easily computed Euclidean norm, there is an easy constructive way to
find ged’s, as the next theorem shows.

(Euclidean Algorithm) Let D be a Euclidean domain with a Euclidean norm v, and
let a and b be nonzero elements of D. Let r; be as in Condition 1 for a Euclidean norm,
that is,

a=bq +r,
where either r; = 0 or v(r;) < v(b). If r; # 0, let r, be such that

b=rq+nr,
where either r, = 0 or v(rz) < v(ry). In general, let r;1; be such that

ri-1 = riqi+1 + riy1,

where either r;y = 0 or v(riy1) < v(r;). Then the sequence r;,r,,--- must terminate
with some r; = 0.If r; = 0, then bis a gcd of @ and b. If r; # 0 and r; is the first r; = 0,
then a gcd of @ and b is ry_;.
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Furthermore, if d is a gcd of a and b, then there exist A and p in D such that
d=la+ ub.

Since v(r;) < v(ri—1) and v(r;) is a nonnegative integer, it follows that after some finite
number of steps we must arrive at some r; = 0.
If ry = 0, then a = bq, and b is a gcd of a and b. Suppose ri # 0. Then if d | a and
d| b, we have
d|(a—bq),
so d|r,. However, if d) | ry and d; | b, then
di | (bgy + 1),

so0 d; | a. Thus the set of common divisors of a and b is the same set as the set of common
divisors of b and r;. By a similar argument, if r, # 0, the set of common divisors of b
and r is the same set as the set of common divisors of r; and r,. Continuing this process,
we see finally that the set of common divisors of a and b is the same set as the set of
common divisors of r,_, and r,_;, where r; is the first r; equal to 0. Thus a gcd of r;_,
and r,_, is also a gcd of a and b. But the equation

rs—2 = gsrs—1 +rs = qsrs—1

shows that a gcd of r;_ and r,_ is r5_;.

It remains to show that we can express a gcd d of @ and b as d = Aa + ub. In terms
of the construction just given, if d = b, then d = Oa + 1b and we are done. If d = r;_;,
then, working backward through our equations, we can express each r; in the form
Airi—1 + piri—o for some A;, u; € D. To illustrate using the first step, from the equation

Ts—3 = gs—1Fs—2 + Ts—1

we obtain d= Ts—1 = Is—3 — gs—175-2. @
We then express 7;_; in terms of r;_3 and r;_4 and substitute in Eq. (1) to express d in
terms of r;—3 and r,;_4. Eventually, we will have

d = A3ry + pary = A3(b — riq2) + pnary = Asb + (u3 — Azga)rt
= A3b + (u3 — A3g2)(a — bq)

which can be expressed in the form d = Aa + ub. If &’ is any other gcd of a and b, then
d' = ud for some unit u, so d’ = (Au)a + (uu)b. *

The nice thing about Theorem 35.9 is that it can be implemented on a computer. Of
course, we anticipate that of anything that is labeled an “algorithm.”

Let us illustrate the Euclidean algorithm for the Euclidean norm | | on Z by computing a
ged of 22,471 and 3,266. We just apply the division algorithm over and over again, and
the last nonzero remainder is a gcd. We label the numbers obtained as in Theorem 35.9
to further illustrate the statement and proof of the theorem. The computations are easily
checked.

a=22471
b = 3,266
22,471 = (3,266)6 + 2,875 rn =2.875
3,266 = (2,875)1 + 391 r; =391
2,875 = (391)7 + 138 r3 =138
391 = (138)2 + 115 ry =115
138 = (115)1 + 23 rs =23

115=(23)5+0 re =0
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Thus rs = 23 is a gcd of 22,471 and 3,266. We found a gcd without factoring! This
is important, for sometimes it is very difficult to find a factorization of an integer into
primes. A

Note that the division algorithm Condition 1 in the definition of a Euclidean norm says
nothing about r being “positive.” In computing a gcd in Z by the Euclidean algorithm
for | |, as in Example 35.10, it is surely in our interest to make |r;| as small as possible
in each division. Thus, repeating Example 35.10, it would be more efficient to write

a=22471
b = 3,266
22,471 = (3,266)7 — 391 r=-391
3,266 = (391)8 + 138 r, =138
391 = (138)3 — 23 r3=-23
138 =(23)6 +0 ry =0

We can change the sign of r; from negative to positive when we wish since the divisors

of r; and —r; are the same.

m EXERCISES 35

A

Computations

In Exercises 1 through 5, state whether the given function v is a Euclidean norm for the given integral domain.

1. The function v for Z given by v(n) = n? for nonzeron € Z
2. The function v for Z[x] given by v(f(x)) = (degree of f(x)) for f(x) € Z[x],f(x) # 0

3. The function v for Z[x] given by v(f(x)) = (the absolute value of the coefficient of the highest degree nonzero
term of f(x)) for nonzero f(x) € Z[x]

4, The function v for Q given by v(a) = a? for nonzero a € Q

5. The function v for Q given by v(a) = 50 for nonzero a € Q

6. By referring to Example 35.11, actually express the gcd 23 in the form A(22,471) + u(3,266) for A, u € Z.
[Hint: From the next-to-last line of the computation in Example 35.11, 23 = (138)3 — 391. From the line
before that, 138 = 3,266 — (391)8, so substituting, you get 23 = [3,266 — (391)8]3 — 391, and so on. That is,
work your way back up to actually find values for A and p.]

7. Find a ged of 49,349 and 15,555 in Z.

8. Following the idea of Exercise 6 and referring to Exercise 7, express the positive gcd of 49,349 and 15,555 in
Z in the form A(49,349) + u(15,555) for A, u € Z.

9. Find a ged of

and

in Q[x].

10. Describe how the Euclidean Algorithm can be used to find the gcd of n members aj,as, - - -

domain.

70— 3% 438 — 117 + 1168 — 116 + 19x* — 13x° + 8% — 9x + 3

=30 3 -9 + 52 —5x+2

, an of a Euclidean

11. Using your method devised in Exercise 10, find the gcd of 2178, 396, 792, and 726.

Concepts

12. Let us consider Z[x].



13.

14.
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a. Is Z[x] a UFD? Why?

b. Show that {a + xf(x) | a € 27Z,f(x) € Z[x]} is an ideal in Z[x].
¢. Is Z[x] a PID? (Consider part (b).)

d. Is Z[x] a Euclidean domain? Why?

Determine whether each of the following is true or false.

a. Every Euclidean domain is a PID.

b. Every PID is a Euclidean domain.

¢. Every Euclidean domain is a UFD.

d. Every UFD is a Euclidean domain.

e. Agcdof2and3in Qis %

f. The Euclidean algorithm gives a constructive method for finding a gcd of two integers.

g. If v is a Euclidean norm on a Euclidean domain D, then v(1) < v(a) for all nonzero a € D.

h. If v is a Euclidean norm on a Euclidean domain D, then v(1) < v(a) for all nonzero a € D,a # 1.

i. If v is a Euclidean norm on a Euclidean domain D, then v(1) < v(a) for all nonzero nonunits a € D.
Jj- For any field F, F[x] is a Euclidean domain.

Does the choice of a particular Euclidean norm v on a Euclidean domain D influence the arithmetic structure
of D in any way? Explain.

Theory

15.

16.

17

18.

19.

20.

21.

22,

B

Let D be a Euclidean domain and let v be a Euclidean norm on D. Show that if @ and b are associates in D,
then v(a) = v(b).

Let D be a Euclidean domain and let v be a Euclidean norm on D. Show that for nonzero a, b € D, one has
v(a) < v(ab) if and only if b is not a unit of D. [Hint: Argue from Exercise 15 that v(a) < v(ab) implies that
b is not a unit of D. Using the Euclidean algorithm, show that v(a) = v(ab) implies (a) = (ab). Conclude that
if b is not a unit, then v(a) < v(ab).]

Prove or disprove the following statement: If v is a Euclidean norm on Euclidean domain D, then {a €
D|v(a) > v(1)} U {0} is an ideal of D.

Show that every field is a Euclidean domain.
Let v be a Euclidean norm on a Euclidean domain D.

a. Show that if s € Z such that s + v(1) > 0, then n : D* — Z defined by n(a) = v(a) + s for nonzero a € D
is a Euclidean norm on D. As usual, D* is the set of nonzero elements of D.

b. Show that for t € Z*, A : D* — Z given by A(a) = t - v(a) for nonzero a € D is a Euclidean norm on D.

¢. Show that there exists a Euclidean norm x on D such that i(1) = 1 and u(a) > 100 for all nonzero nonunits
a€eD.

Let D be a UFD. An element c in D is a least common multiple (abbreviated lcm) of two elements a and
bin D if a|c,b|c and if c divides every element of D that is divisible by both a and b. Show that every two
nonzero elements a and b of a Euclidean domain D have an Icm in D. [Hint: Show that all common multiples,
in the obvious sense, of both a and b form an ideal of D.]

Use the last statement in Theorem 35.9 to show that two nonzero elements r, s € Z generate the group (Z, +)
if and only if r and s, viewed as integers in the domain Z, are relatively prime, that is, have a gcd of 1.
Using the last statement in Theorem 35.9, show that for nonzero a, b, n € Z, the congruence ax = b (mod n)
has a solution in Z if a and n are relatively prime.
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